CryptDB: Protecting Confidentiality with
Encrypted Query Processing

Raluca Ada Popa, Catherine M. S. Redfield,
Nickolai Zeldovich, and Hari Balakrishnan
MIT CSAIL

ABSTRACT

Online applications are vulnerable to theft of sensitive information because adversaries can exploit
software bugs to gain access to private data, and because curious or malicious administrators may
capture and leak data. CryptDB is a system that provides practical and provable confidentiality in the
face of these attacks for applications backed by SQL databases. It works by executing SQL queries
over encrypted data using a collection of efficient SQL-aware encryption schemes. CryptDB can
also chain encryption keys to user passwords, so that a data item can be decrypted only by using the
password of one of the users with access to that data. As a result, a database administrator never gets
access to decrypted data, and even if all servers are compromised, an adversary cannot decrypt the data
of any user who is not logged in. An analysis of a trace of 126 million SQL queries from a production
MySQL server shows that CryptDB can support operations over encrypted data for 99.5% of the
128,840 columns seen in the trace. Our evaluation shows that CryptDB has low overhead, reducing
throughput by 14.5% for phpBB, a web forum application, and by 26% for queries from TPC-C,
compared to unmodified MySQL. Chaining encryption keys to user passwords requires 11-13 unique
schema annotations to secure more than 20 sensitive fields and 27 lines of source code changes for
three multi-user web applications.

1 INTRODUCTION

Theft of private information is a significant problem, particularly for online applications [40]. An
adversary can exploit software vulnerabilities to gain unauthorized access to servers [32]; curious
or malicious administrators at a hosting or application provider can snoop on private data [6]; and
attackers with physical access to servers can access all data on disk and in memory [23].

One approach to reduce the damage caused by server compromises is to encrypt sensitive data, as
in SUNDR [28], SPORC [16], and Depot [30], and run all computations (application logic) on clients.
Unfortunately, several important applications do not lend themselves to this approach, including
database-backed web sites that process queries to generate data for the user, and applications that
compute over large amounts of data. Even when this approach is tenable, converting an existing
server-side application to this form can be difficult. Another approach would be to consider theoretical
solutions such as fully homomorphic encryption [19], which allows servers to compute arbitrary
functions over encrypted data, while only clients see decrypted data. However, fully homomorphic
encryption schemes are still prohibitively expensive by orders of magnitude [10, 21].

This paper presents CryptDB, a system that explores an intermediate design point to provide
confidentiality for applications that use database management systems (DBMSes). CryptDB leverages

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

SOSP ’11, October 23-26, 2011, Cascais, Portugal.

Copyright 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

(T
19sn “3'9) ur pa330[Jou aIe Jey) sIAsn 0) SUISUO[q BIEP UIRIqO JoUuuRd ATBSIdAPE 9Y) saInsud g(IdAID) ased yorym ur ‘s1oAIes SING(pue ‘Axoxd ‘uoneoridde oy jo arempiey
pue 218M}JOS 9} 10q IAO0 [01u0d 9)9[dwros sured Aresioape ue ‘g jeary) uy ‘uonewiojur gjearrd Aue Sursseooe wory g oy sjueadxd gqidAr) aseo yorym ur ‘eyep ajearrd
uo sdoous 194198 SING(T Y 03 SS90, 939[dW0D Y)IM JOJeNSIUTIPE ISeqeIep SNOLIND B T JBAIY) U] "SIUI| PIJIOP SB UMOYS ‘SIBAIY) JO SPULY 0M) SassaIppe gqidA1) 1oAIas
SINGJ 2y} pue ‘(19A19s uoneordde oy se awes) A[fensn st yorym) Axoid aseqelep s, gdA1D Suruunt 104198 € 1oA1ds uonedrdde oy ‘s1ondwios s1asn uoamieq uoneredss
eorpur saur] payseq “gq@dA1) £q pappe sjusuodwod sajesrpur Jurpeys ‘A[eandadsal ‘ejep pue sassaoo0id juasardar saxoq papunol pue Je[n3ueiody ‘SINGJ 2yp ur suonerado
oyder30ydA1o wirograd 03 (s[)) suonounj pauyap-1asn sasn gIdAID S payipowrun ue pue Axoud aspguivp e :syred om) Jo Jursisuod AMONIYdIE s, gqIdAI) 1 aan3iy

1d pIomsseq

7 1By

1 424498 SWIAd 2428 &xoad gaqidLi) 1 u2a49s uonporddy stamdutod $.42s() 1
1 1 1 1
" aqu) £y ewoyos Id _ " : |
) paydAmoug pojelouuy | | 1Ky aanoy = 1 Cd PIOMSSEd]
1 1 1 1
! 0 I dnjos Koyg ! cesn 1
! ! ' uoissas !
" sdan gad£n _A|V_m2mn_ payrpowu) Axoxd sseqereq “ uoneorddy ! 24110y "
1 1 1
F } 1
1 1 1
1 1 1

1
1 I 1980
1

the typical structure of database-backed applications, consisting of a DBMS server and a separate
application server, as shown in Figure 1; the latter runs the application code and issues DBMS queries
on behalf of one or more users. CryptDB’s approach is to execute queries over encrypted data, and the
key insight that makes it practical is that SQL uses a well-defined set of operators, each of which we
are able to support efficiently over encrypted data.

CryptDB addresses two threats. The first threat is a curious database administrator (DBA) who
tries to learn private data (e.g., health records, financial statements, personal information) by snooping
on the DBMS server; here, CryptDB prevents the DBA from learning private data. The second threat
is an adversary that gains complete control of application and DBMS servers. In this case, CryptDB
cannot provide any guarantees for users that are logged into the application during an attack, but can
still ensure the confidentiality of logged-out users’ data.

There are two challenges in combating these threats. The first lies in the tension between
minimizing the amount of confidential information revealed to the DBMS server and the ability to
efficiently execute a variety of queries. Current approaches for computing over encrypted data are
either too slow or do not provide adequate confidentiality, as we discuss in §9. On the other hand,
encrypting data with a strong and efficient cryptosystem, such as AES, would prevent the DBMS
server from executing many SQL queries, such as queries that ask for the number of employees in the
“sales” department or for the names of employees whose salary is greater than $60,000. In this case,
the only practical solution would be to give the DBMS server access to the decryption key, but that
would allow an adversary to also gain access to all data.

The second challenge is to minimize the amount of data leaked when an adversary compromises
the application server in addition to the DBMS server. Since arbitrary computation on encrypted data
is not practical, the application must be able to access decrypted data. The difficulty is thus to ensure
that a compromised application can obtain only a limited amount of decrypted data. A naive solution
of assigning each user a different database encryption key for their data does not work for applications
with shared data, such as bulletin boards and conference review sites.

CryptDB addresses these challenges using three key ideas:

e The first is to execute SQL queries over encrypted data. CryptDB implements this idea using a
SQL-aware encryption strategy, which leverages the fact that all SQL queries are made up of a
well-defined set of primitive operators, such as equality checks, order comparisons, aggregates
(sums), and joins. By adapting known encryption schemes (for equality, additions, and order
checks) and using a new privacy-preserving cryptographic method for joins, CryptDB encrypts
each data item in a way that allows the DBMS to execute on the transformed data. CryptDB is
efficient because it mostly uses symmetric-key encryption, avoids fully homomorphic encryption,
and runs on unmodified DBMS software (by using user-defined functions).

e The second technique is adjustable query-based encryption. Some encryption schemes leak more
information than others about the data to the DBMS server, but are required to process certain
queries. To avoid revealing all possible encryptions of data to the DBMS a priori, CryptDB
carefully adjusts the SQL-aware encryption scheme for any given data item, depending on the
queries observed at run-time. To implement these adjustments efficiently, CryptDB uses onions of
encryption. Onions are a novel way to compactly store multiple ciphertexts within each other in
the database and avoid expensive re-encryptions.

o The third idea is to chain encryption keys to user passwords, so that each data item in the database
can be decrypted only through a chain of keys rooted in the password of one of the users with
access to that data. As a result, if the user is not logged into the application, and if the adversary
does not know the user’s password, the adversary cannot decrypt the user’s data, even if the DBMS
and the application server are fully compromised. To construct a chain of keys that captures the
application’s data privacy and sharing policy, CryptDB allows the developer to provide policy
annotations over the application’s SQL schema, specifying which users (or other principals, such
as groups) have access to each data item.

We have implemented CryptDB on both MySQL and Postgres; our design and most of our
implementation should be applicable to most standard SQL DBMSes. An analysis of a 10-day trace
of 126 million SQL queries from many applications at MIT suggests that CryptDB can support

operations over encrypted data for 99.5% of the 128,840 columns seen in the trace. Our evaluation
shows that CryptDB has low overhead, reducing throughput by 14.5% for the phpBB web forum
application, and by 26% for queries from TPC-C, compared to unmodified MySQL. We evaluated the
security of CryptDB on six real applications (including phpBB, the HotCRP conference management
software [27], and the OpenEMR medical records application); the results show that CryptDB protects
most sensitive fields with highly secure encryption schemes. Chaining encryption keys to user
passwords requires 11-13 unique schema annotations to enforce privacy policies on more than 20
sensitive fields (including a new policy in HotCRP for handling papers in conflict with a PC chair) and
2-7 lines of source code changes for three multi-user web applications.

The rest of this paper is structured as follows. In §2, we discuss the threats that CryptDB defends
against in more detail. Then, we describe CryptDB’s design for encrypted query processing in §3 and
for key chaining to user passwords in §4. In §5, we present several case studies of how applications can
use CryptDB, and in §6, we discuss limitations of our design, and ways in which it can be extended.
Next, we describe our prototype implementation in §7, and evaluate the performance and security of
CryptDB, as well as the effort required for application developers to use CryptDB, in §8. We compare
CryptDB to related work in §9 and conclude in §10.

2 SECURITY OVERVIEW

Figure 1 shows CryptDB’s architecture and threat models. CryptDB works by intercepting all SQL
queries in a database proxy, which rewrites queries to execute on encrypted data (CryptDB assumes
that all queries go through the proxy). The proxy encrypts and decrypts all data, and changes some
query operators, while preserving the semantics of the query. The DBMS server never receives
decryption keys to the plaintext so it never sees sensitive data, ensuring that a curious DBA cannot
gain access to private information (threat 1).

To guard against application, proxy, and DBMS server compromises (threat 2), developers annotate
their SQL schema to define different principals, whose keys will allow decrypting different parts of the
database. They also make a small change to their applications to provide encryption keys to the proxy,
as described in §4. The proxy determines what parts of the database should be encrypted under what
key. The result is that CryptDB guarantees the confidentiality of data belonging to users that are not
logged in during a compromise (e.g., user 2 in Figure 1), and who do not log in until the compromise
is detected and fixed by the administrator.

Although CryptDB protects data confidentiality, it does not ensure the integrity, freshness, or
completeness of results returned to the application. An adversary that compromises the application,
proxy, or DBMS server, or a malicious DBA, can delete any or all of the data stored in the database.
Similarly, attacks on user machines, such as cross-site scripting, are outside of the scope of CryptDB.

We now describe the two threat models addressed by CryptDB, and the security guarantees
provided under those threat models.

2.1 Threat 1: DBMS Server Compromise

In this threat, CryptDB guards against a curious DBA or other external attacker with full access to the
data stored in the DBMS server. Our goal is confidentiality (data secrecy), not integrity or availability.
The attacker is assumed to be passive: she wants to learn confidential data, but does not change queries
issued by the application, query results, or the data in the DBMS. This threat includes DBMS software
compromises, root access to DBMS machines, and even access to the RAM of physical machines.
With the rise in database consolidation inside enterprise data centers, outsourcing of databases to
public cloud computing infrastructures, and the use of third-party DBAs, this threat is increasingly
important.

Approach. CryptDB aims to protect data confidentiality against this threat by executing SQL
queries over encrypted data on the DBMS server. The proxy uses secret keys to encrypt all data
inserted or included in queries issued to the DBMS. Our approach is to allow the DBMS server to
perform query processing on encrypted data as it would on an unencrypted database, by enabling it to
compute certain functions over the data items based on encrypted data. For example, if the DBMS
needs to perform a GROUP BY on column ¢, the DBMS server should be able to determine which
items in that column are equal to each other, but not the actual content of each item. Therefore, the

proxy needs to enable the DBMS server to determine relationships among data necessary to process a
query. By using SQL-aware encryption that adjusts dynamically to the queries presented, CryptDB is
careful about what relations it reveals between tuples to the server. For instance, if the DBMS needs to
perform only a GROUP BY on a column ¢, the DBMS server should not know the order of the items in
column c, nor should it know any other information about other columns. If the DBMS is required to
perform an ORDER BY, or to find the MAX or MIN, CryptDB reveals the order of items in that column,
but not otherwise.

Guarantees. CryptDB provides confidentiality for data content and for names of columns and
tables; CryptDB does not hide the overall table structure, the number of rows, the types of columns, or
the approximate size of data in bytes. The security of CryptDB is not perfect: CryptDB reveals to
the DBMS server relationships among data items that correspond to the classes of computation that
queries perform on the database, such as comparing items for equality, sorting, or performing word
search. The granularity at which CryptDB allows the DBMS to perform a class of computations is an
entire column (or a group of joined columns, for joins), which means that even if a query requires
equality checks for a few rows, executing that query on the server would require revealing that class of
computation for an entire column. §3.1 describes how these classes of computation map to CryptDB’s
encryption schemes, and the information they reveal.
More intuitively, CryptDB provides the following properties:

e Sensitive data is never available in plaintext at the DBMS server.

e The information revealed to the DBMS server depends on the classes of computation required by
the application’s queries, subject to constraints specified by the application developer in the schema
(83.5.1):

1. If the application requests no relational predicate filtering on a column, nothing about the
data content leaks (other than its size in bytes).

2. If the application requests equality checks on a column, CryptDB’s proxy reveals which
items repeat in that column (the histogram), but not the actual values.

3. If the application requests order checks on a column, the proxy reveals the order of the
elements in the column.

e The DBMS server cannot compute the (encrypted) results for queries that involve computation
classes not requested by the application.

How close is CryptDB to “optimal” security? Fundamentally, optimal security is achieved by
recent work in theoretical cryptography enabling any computation over encrypted data [18]; however,
such proposals are prohibitively impractical. In contrast, CryptDB is practical, and in §8.3, we
demonstrate that it also provides significant security in practice. Specifically, we show that all or
almost all of the most sensitive fields in the tested applications remain encrypted with highly secure
encryption schemes. For such fields, CryptDB provides optimal security, assuming their value is
independent of the pattern in which they are accessed (which is the case for medical information,
social security numbers, etc). CryptDB is not optimal for fields requiring more revealing encryption
schemes, but we find that most such fields are semi-sensitive (such as timestamps).

Finally, we believe that a passive attack model is realistic because malicious DBAs are more likely
to read the data, which may be hard to detect, than to change the data or query results, which is more
likely to be discovered. In §9, we cite related work on data integrity that could be used in complement
with our work. An active adversary that can insert or update data may be able to indirectly compromise
confidentiality. For example, an adversary that modifies an email field in the database may be able
to trick the application into sending a user’s data to the wrong email address, when the user asks the
application to email her a copy of her own data. Such active attacks on the DBMS fall under the
second threat model, which we now discuss.

2.2 Threat 2: Arbitrary Threats

We now describe the second threat where the application server, proxy, and DBMS server infrastruc-
tures may be compromised arbitrarily. The approach in threat 1 is insufficient because an adversary
can now get access to the keys used to encrypt the entire database.

The solution is to encrypt different data items (e.g., data belonging to different users) with
different keys. To determine the key that should be used for each data item, developers annotate the
application’s database schema to express finer-grained confidentiality policies. A curious DBA still
cannot obtain private data by snooping on the DBMS server (threat 1), and in addition, an adversary
who compromises the application server or the proxy can now decrypt only data of currently logged-in
users (which are stored in the proxy). Data of currently inactive users would be encrypted with keys
not available to the adversary, and would remain confidential.

In this configuration, CryptDB provides strong guarantees in the face of arbitrary server-side
compromises, including those that gain root access to the application or the proxy. CryptDB leaks at
most the data of currently active users for the duration of the compromise, even if the proxy behaves
in a Byzantine fashion. By “duration of a compromise”, we mean the interval from the start of the
compromise until any trace of the compromise has been erased from the system. For a read SQL
injection attack, the duration of the compromise spans the attacker’s SQL queries. In the above
example of an adversary changing the email address of a user in the database, we consider the system
compromised for as long as the attacker’s email address persists in the database.

3 QUERIES OVER ENCRYPTED DATA

This section describes how CryptDB executes SQL queries over encrypted data. The threat model
in this section is threat 1 from §2.1. The DBMS machines and administrators are not trusted, but the
application and the proxy are trusted.

CryptDB enables the DBMS server to execute SQL queries on encrypted data almost as if it were
executing the same queries on plaintext data. Existing applications do not need to be changed. The
DBMS’s query plan for an encrypted query is typically the same as for the original query, except that
the operators comprising the query, such as selections, projections, joins, aggregates, and orderings,
are performed on ciphertexts, and use modified operators in some cases.

CryptDB’s proxy stores a secret master key MK, the database schema, and the current encryption
layers of all columns. The DBMS server sees an anonymized schema (in which table and column
names are replaced by opaque identifiers), encrypted user data, and some auxiliary tables used by
CryptDB. CryptDB also equips the server with CryptDB-specific user-defined functions (UDFs) that
enable the server to compute on ciphertexts for certain operations.

Processing a query in CryptDB involves four steps:

1. The application issues a query, which the proxy intercepts and rewrites: it anonymizes each table
and column name, and, using the master key MK, encrypts each constant in the query with an
encryption scheme best suited for the desired operation (§3.1).

2. The proxy checks if the DBMS server should be given keys to adjust encryption layers before
executing the query, and if so, issues an UPDATE query at the DBMS server that invokes a UDF to
adjust the encryption layer of the appropriate columns (§3.2).

3. The proxy forwards the encrypted query to the DBMS server, which executes it using standard
SQL (occasionally invoking UDFs for aggregation or keyword search).

4. The DBMS server returns the (encrypted) query result, which the proxy decrypts and returns to the
application.

3.1 SQL-aware Encryption

We now describe the encryption types that CryptDB uses, including a number of existing cryptosystems,
an optimization of a recent scheme, and a new cryptographic primitive for joins. For each encryption
type, we explain the security property that CryptDB requires from it, its functionality, and how it is
implemented.

Random (RND). RND provides the maximum security in CryptDB: indistinguishability under an
adaptive chosen-plaintext attack (IND-CPA); the scheme is probabilistic, meaning that two equal values
are mapped to different ciphertexts with overwhelming probability. On the other hand, RND does
not allow any computation to be performed efficiently on the ciphertext. An efficient construction of
RND is to use a block cipher like AES or Blowfish in CBC mode together with a random initialization

vector (IV). (We mostly use AES, except for integer values, where we use Blowfish for its 64-bit block
size because the 128-bit block size of AES would cause the ciphertext to be significantly longer).

Since, in this threat model, CryptDB assumes the server does not change results, CryptDB does
not require a stronger IND-CCA?2 construction (which would be secure under a chosen-ciphertext
attack). However, it would be straightforward to use an IND-CCA2-secure implementation of RND
instead, such as a block cipher in UFE mode [13], if needed.

Deterministic (DET). DET has a slightly weaker guarantee, yet it still provides strong security: it
leaks only which encrypted values correspond to the same data value, by deterministically generating
the same ciphertext for the same plaintext. This encryption layer allows the server to perform equality
checks, which means it can perform selects with equality predicates, equality joins, GROUP BY, COUNT,
DISTINCT, etc.

In cryptographic terms, DET should be a pseudo-random permutation (PRP) [20]. For 64-bit and
128-bit values, we use a block cipher with a matching block size (Blowfish and AES respectively);
we make the usual assumption that the AES and Blowfish block ciphers are PRPs. We pad smaller
values out to 64 bits, but for data that is longer than a single 128-bit AES block, the standard CBC
mode of operation leaks prefix equality (e.g., if two data items have an identical prefix that is at least
128 bits long). To avoid this problem, we use AES with a variant of the CMC mode [24], which can
be approximately thought of as one round of CBC, followed by another round of CBC with the blocks
in the reverse order. Since the goal of DET is to reveal equality, we use a zero IV (or “tweak” [24]) for
our AES-CMC implementation of DET.

Order-preserving encryption (OPE). OPE allows order relations between data items to be estab-
lished based on their encrypted values, without revealing the data itself. If x <y, then OPEg (x) <
OPE (y), for any secret key K. Therefore, if a column is encrypted with OPE, the server can perform
range queries when given encrypted constants OPEg (c|) and OPEg (c;) corresponding to the range
[c1,¢2]. The server can also perform ORDER BY, MIN, MAX, SORT, etc.

OPE is a weaker encryption scheme than DET because it reveals order. Thus, the CryptDB proxy
will only reveal OPE-encrypted columns to the server if users request order queries on those columns.
OPE has provable security guarantees [4]: the encryption is equivalent to a random mapping that
preserves order.

The scheme we use [4] is the first provably secure such scheme. Until CryptDB, there was no
implementation nor any measure of the practicality of the scheme. The direct implementation of
the scheme took 25 ms per encryption of a 32-bit integer on an Intel 2.8 GHz Q9550 processor. We
improved the algorithm by using AVL binary search trees for batch encryption (e.g., database loads),
reducing the cost of OPE encryption to 7 ms per encryption without affecting its security. We also
implemented a hypergeometric sampler that lies at the core of OPE, porting a Fortran implementation
from 1988 [25].

Homomorphic encryption (HOM). HOM is a secure probabilistic encryption scheme (IND-
CPA secure), allowing the server to perform computations on encrypted data with the final result
decrypted at the proxy. While fully homomorphic encryption is prohibitively slow [10], homomorphic
encryption for specific operations is efficient. To support summation, we implemented the Paillier
cryptosystem [35]. With Paillier, multiplying the encryptions of two values results in an encryption
of the sum of the values, i.e., HOM(x) - HOMg (y) = HOMk (x + y), where the multiplication is
performed modulo some public-key value. To compute SUM aggregates, the proxy replaces SUM with
calls to a UDF that performs Paillier multiplication on a column encrypted with HOM. HOM can also
be used for computing averages by having the DBMS server return the sum and the count separately,
and for incrementing values (e.g., SET id=id+1), on which we elaborate shortly.

With HOM, the ciphertext is 2048 bits. In theory, it should be possible to pack multiple values
from a single row into one HOM ciphertext for that row, using the scheme of Ge and Zdonik [17],
which would result in an amortized space overhead of 2x (e.g., a 32-bit value occupies 64 bits) for
a table with many HOM-encrypted columns. However, we have not implemented this optimization
in our prototype. This optimization would also complicate partial-row UPDATE operations that reset
some—but not all—of the values packed into a HOM ciphertext.

SEARCH

DET: equality selection OPE-JOIN: Onion Search
JO range join
£ HOM: add
o
int value
Onion Eq Onion Ord Onion Add

Figure 2: Onion encryption layers and the classes of computation they allow. Onion names stand for the
operations they allow at some of their layers (Equality, Order, Search, and Addition). In practice, some
onions or onion layers may be omitted, depending on column types or schema annotations provided by
application developers (§3.5.2). DET and JOIN are often merged into a single onion layer, since JOIN is a
concatenation of DET and JOIN-ADJ (§3.4). A random IV for RND (§3.1), shared by the RND layers in Eg
and Ord, is also stored for each data item.

Join (JOIN and OPE-JOIN). A separate encryption scheme is necessary to allow equality joins
between two columns, because we use different keys for DET to prevent cross-column correlations.
JOIN also supports all operations allowed by DET, and also enables the server to determine repeat-
ing values between two columns. OPE-JOIN enables joins by order relations. We provide a new
cryptographic scheme for JOIN and we discuss it in §3.4.

Word search (SEARCH). SEARCH is used to perform searches on encrypted text to support
operations such as MySQL’s LIKE operator. We implemented the cryptographic protocol of Song et
al. [46], which was not previously implemented by the authors; we also use their protocol in a different
way, which results in better security guarantees. For each column needing SEARCH, we split the text
into keywords using standard delimiters (or using a special keyword extraction function specified by
the schema developer). We then remove repetitions in these words, randomly permute the positions of
the words, and then encrypt each of the words using Song et al.’s scheme, padding each word to the
same size. SEARCH is nearly as secure as RND: the encryption does not reveal to the DBMS server
whether a certain word repeats in multiple rows, but it leaks the number of keywords encrypted with
SEARCH; an adversary may be able to estimate the number of distinct or duplicate words (e.g., by
comparing the size of the SEARCH and RND ciphertexts for the same data).

When the user performs a query such as SELECT * FROM messages WHERE msg LIKE "%
alice %", the proxy gives the DBMS server a token, which is an encryption of alice. The server
cannot decrypt the token to figure out the underlying word. Using a user-defined function, the DBMS
server checks if any of the word encryptions in any message match the token. In our approach, all
the server learns from searching is whether a token matched a message or not, and this happens only
for the tokens requested by the user. The server would learn the same information when returning
the result set to the users, so the overall search scheme reveals the minimum amount of additional
information needed to return the result.

Note that SEARCH allows CryptDB to only perform full-word keyword searches; it cannot
support arbitrary regular expressions. For applications that require searching for multiple adjacent
words, CryptDB allows the application developer to disable duplicate removal and re-ordering by
annotating the schema, even though this is not the default. Based on our trace evaluation, we find that
most uses of LIKE can be supported by SEARCH with such schema annotations. Of course, one can
still combine multiple LIKE operators with AND and OR to check whether multiple independent words
are in the text.

3.2 Adjustable Query-based Encryption

A key part of CryptDB’s design is adjustable query-based encryption, which dynamically adjusts the
layer of encryption on the DBMS server. Our goal is to use the most secure encryption schemes that
enable running the requested queries. For example, if the application issues no queries that compare
data items in a column, or that sort a column, the column should be encrypted with RND. For columns
that require equality checks but not inequality checks, DET suffices. However, the query set is not

Employees Tablel

ID || Name CI-1V|Cl-Eq| C1-Ord| C1-Add || C2-1V| C2-Eq | C2-Ord | C2-Search
23| Alice X27¢3|x2b82 | xcb94 | xc2e4 [[x8al3|xdle3 | x7ebl | x29b0

Figure 3: Data layout at the server. When the application creates the table shown on the left, the table
created at the DBMS server is the one shown on the right. Ciphertexts shown are not full-length.

always known in advance. Thus, we need an adaptive scheme that dynamically adjusts encryption
strategies.

Our idea is to encrypt each data item in one or more onions: that is, each value is dressed in layers
of increasingly stronger encryption, as illustrated in Figures 2 and 3. Each layer of each onion enables
certain kinds of functionality as explained in the previous subsection. For example, outermost layers
such as RND and HOM provide maximum security, whereas inner layers such as OPE provide more
functionality.

Multiple onions are needed in practice, both because the computations supported by different
encryption schemes are not always strictly ordered, and because of performance considerations (size
of ciphertext and encryption time for nested onion layers). Depending on the type of the data (and any
annotations provided by the application developer on the database schema, as discussed in §3.5.2),
CryptDB may not maintain all onions for each column. For instance, the Search onion does not make
sense for integers, and the Add onion does not make sense for strings.

For each layer of each onion, the proxy uses the same key for encrypting values in the same
column, and different keys across tables, columns, onions, and onion layers. Using the same key for
all values in a column allows the proxy to perform operations on a column without having to compute
separate keys for each row that will be manipulated. (We use finer-grained encryption keys in §4 to
reduce the potential amount of data disclosure in case of an application or proxy server compromise.)
Using different keys across columns prevents the server from learning any additional relations. All
of these keys are derived from the master key MK. For example, for table 7, column ¢, onion o, and
encryption layer /, the proxy uses the key

K; .01 = PRPyg(table ¢, column ¢, onion o, layer [), €))

where PRP is a pseudorandom permutation (e.g., AES).

Each onion starts out encrypted with the most secure encryption scheme (RND for onions Eq and
Ord, HOM for onion Add, and SEARCH for onion Search). As the proxy receives SQL queries from
the application, it determines whether layers of encryption need to be removed. Given a predicate P
on column ¢ needed to execute a query on the server, the proxy first establishes what onion layer is
needed to compute P on c. If the encryption of c is not already at an onion layer that allows P, the
proxy strips off the onion layers to allow P on ¢, by sending the corresponding onion key to the server.
The proxy never decrypts the data past the least-secure encryption onion layer (or past some other
threshold layer, if specified by the application developer in the schema, §3.5.1).

CryptDB implements onion layer decryption using UDFs that run on the DBMS server. For
example, in Figure 3, to decrypt onion Ord of column 2 in table 1 to layer OPE, the proxy issues the
following query to the server using the DECRYPT_RND UDF:

UPDATE Tablel SET (C2-Ord = DECRYPTRND(K, C2-Ord, C2-IV)

where K is the appropriate key computed from Equation (1). At the same time, the proxy updates its
own internal state to remember that column C2-Ord in Tablel is now at layer OPE in the DBMS. Each
column decryption should be included in a transaction to avoid consistency problems with clients
accessing columns being adjusted.

Note that onion decryption is performed entirely by the DBMS server. In the steady state, no
server-side decryptions are needed, because onion decryption happens only when a new class of
computation is requested on a column. For example, after an equality check is requested on a column
and the server brings the column to layer DET, the column remains in that state, and future queries
with equality checks require no decryption. This property is the insight into why CryptDB’s overhead
is modest in the steady state (see §8): the server mostly performs typical SQL processing.

3.3 Executing over Encrypted Data

Once the onion layers in the DBMS are at the layer necessary to execute a query, the proxy transforms
the query to operate on these onions. In particular, the proxy replaces column names in a query with
corresponding onion names, based on the class of computation performed on that column. For example,
for the schema shown in Figure 3, a reference to the Name column for an equality comparison will be
replaced with a reference to the C2-Eg column.

The proxy also replaces each constant in the query with a corresponding onion encryption of that
constant, based on the computation in which it is used. For instance, if a query contains WHERE Name
= ‘Alice’, the proxy encrypts ‘Alice’ by successively applying all encryption layers corresponding
to onion Eg that have not yet been removed from C2-Eq.

Finally, the server replaces certain operators with UDF-based counterparts. For instance, the SUM
aggregate operator and the + column-addition operator must be replaced with an invocation of a UDF
that performs HOM addition of ciphertexts. Equality and order operators (such as = and <) do not
need such replacement and can be applied directly to the DET and OPE ciphertexts.

Once the proxy has transformed the query, it sends the query to the DBMS server, receives query
results (consisting of encrypted data), decrypts the results using the corresponding onion keys, and
sends the decrypted result to the application.

Read query execution. To understand query execution over ciphertexts, consider the example
schema shown in Figure 3. Initially, each column in the table is dressed in all onions of encryption,
with RND, HOM, and SEARCH as outermost layers, as shown in Figure 2. At this point, the server
can learn nothing about the data other than the number of columns, rows, and data size.

To illustrate when onion layers are removed, consider the query:

SELECT ID FROM Employees WHERE Name = ‘Alice’,

which requires lowering the encryption of Name to layer DET. To execute this query, the proxy first
issues the query

UPDATE Tablel SET (2-Eq = DECRYPT RND(K7y 2 EqRND, C2-Eq, C2-IV),
where column C2 corresponds to Name. The proxy then issues
SELECT CI1-Eq, C1-IV FROM Tablel WHERE C2-Eq = x7..d,

where column C/ corresponds to ID, and where x7..d is the Eq onion encryption of “Alice” with keys
Kr1,02,E4,50IN and K77 c2 Eg DET (see Figure 2). Note that the proxy must request the random IV from
column C1-IV in order to decrypt the RND ciphertext from C1-Eq. Finally, the proxy decrypts the
results from the server using keys K7y c1 g4 RND» K71,C1,E4,DET> @and K77, 1, E¢,J0IN, Obtains the result
23, and returns it to the application.

If the next query is SELECT COUNT(*) FROM Employees WHERE Name = ‘Bob’, no server-
side decryptions are necessary, and the proxy directly issues the query SELECT COUNT(*) FROM
Tablel WHERE C2-Eq = xbb..4a, where xbb..4a is the Eg onion encryption of “Bob” using
K11 €2, 301N and K77 c2 Eg DET-

Write query execution. To support INSERT, DELETE, and UPDATE queries, the proxy applies the
same processing to the predicates (i.e., the WHERE clause) as for read queries. DELETE queries require
no additional processing. For all INSERT and UPDATE queries that set the value of a column to a
constant, the proxy encrypts each inserted column’s value with each onion layer that has not yet been
stripped off in that column.

The remaining case is an UPDATE that sets a column value based on an existing column value,
such as salary=salary+1. Such an update would have to be performed using HOM, to handle
additions. However, in doing so, the values in the OPE and DET onions would become stale. In fact,
any hypothetical encryption scheme that simultaneously allows addition and direct comparison on the
ciphertext is insecure: if a malicious server can compute the order of the items, and can increment
the value by one, the server can repeatedly add one to each field homomorphically until it becomes
equal to some other value in the same column. This would allow the server to compute the difference
between any two values in the database, which is almost equivalent to knowing their values.

There are two approaches to allow updates based on existing column values. If a column is
incremented and then only projected (no comparisons are performed on it), the solution is simple:
when a query requests the value of this field, the proxy should request the HOM ciphertext from
the Add onion, instead of ciphertexts from other onions, because the HOM value is up-to-date. For
instance, this approach applies to increment queries in TPC-C. If a column is used in comparisons after
it is incremented, the solution is to replace the update query with two queries: a SELECT of the old
values to be updated, which the proxy increments and encrypts accordingly, followed by an UPDATE
setting the new values. This strategy would work well for updates that affect a small number of rows.

Other DBMS features. Most other DBMS mechanisms, such as transactions and indexing, work
the same way with CryptDB over encrypted data as they do over plaintext, with no modifications.
For transactions, the proxy passes along any BEGIN, COMMIT, and ABORT queries to the DBMS. Since
many SQL operators behave differently on NULLs than on non-NULL values, CryptDB exposes
NULL values to the DBMS without encryption. CryptDB does not currently support stored procedures,
although certain stored procedures could be supported by rewriting their code in the same way that
CryptDB’s proxy rewrites SQL statements.

The DBMS builds indexes for encrypted data in the same way as for plaintext. Currently, if the
application requests an index on a column, the proxy asks the DBMS server to build indexes on that
column’s DET, JOIN, OPE, or OPE-JOIN onion layers (if they are exposed), but not for RND, HOM,
or SEARCH. More efficient index selection algorithms could be investigated.

3.4 Computing Joins

There are two kinds of joins supported by CryptDB: equi-joins, in which the join predicate is based
on equality, and range joins, which involve order checks. To perform an equi-join of two encrypted
columns, the columns should be encrypted with the same key so that the server can see matching
values between the two columns. At the same time, to provide better privacy, the DBMS server should
not be able to join columns for which the application did not request a join, so columns that are never
joined should not be encrypted with the same keys.

If the queries that can be issued, or the pairs of columns that can be joined, are known a priori,
equi-join is easy to support: CryptDB can use the DET encryption scheme with the same key for each
group of columns that are joined together. §3.5 describes how the proxy learns the columns to be
joined in this case. However, the challenging case is when the proxy does not know the set of columns
to be joined a priori, and hence does not know which columns should be encrypted with matching
keys.

To solve this problem, we introduce a new cryptographic primitive, JOIN-ADIJ (adjustable join),
which allows the DBMS server to adjust the key of each column at runtime. Intuitively, JOIN-ADJ can
be thought of as a keyed cryptographic hash with the additional property that hashes can be adjusted
to change their key without access to the plaintext. JOIN-ADJ is a deterministic function of its input,
which means that if two plaintexts are equal, the corresponding JOIN-ADIJ values are also equal.
JOIN-ADI is collision-resistant, and has a sufficiently long output length (192 bits) to allow us to
assume that collisions never happen in practice.

JOIN-ADI is non-invertible, so we define the JOIN encryption scheme as

JOIN(v)=JOIN-ADI(v) || DET(v),

where || denotes concatenation. This construction allows the proxy to decrypt a JOIN(v) column to
obtain v by decrypting the DET component, and allows the DBMS server to check two JOIN values
for equality by comparing the JOIN-ADJ components.

Each column is initially encrypted at the JOIN layer using a different key, thus preventing any
joins between columns. When a query requests a join, the proxy gives the DBMS server an onion key
to adjust the JOIN-ADJ values in one of the two columns, so that it matches the JOIN-ADIJ key of
the other column (denoted the join-base column). After the adjustment, the columns share the same
JOIN-ADIJ key, allowing the DBMS server to join them for equality. The DET components of JOIN
remain encrypted with different keys.

Note that our adjustable join is transitive: if the user joins columns A and B and then joins columns
B and C, the server can join A and C. However, the server cannot join columns in different “transitivity

groups”. For instance, if columns D and E were joined together, the DBMS server would not be able
to join columns A and D on its own.

After an initial join query, the JOIN-ADJ values remain transformed with the same key, so no
re-adjustments are needed for subsequent join queries between the same two columns. One exception
is if the application issues another query, joining one of the adjusted columns with a third column,
which causes the proxy to re-adjust the column to another join-base. To avoid oscillations and to
converge to a state where all columns in a transitivity group share the same join-base, CryptDB chooses
the first column in lexicographic order on table and column name as the join-base. For n columns, the
overall maximum number of join transitions is n(n — 1) /2.

For range joins, a similar dynamic re-adjustment scheme is difficult to construct due to lack of
structure in OPE schemes. Instead, CryptDB requires that pairs of columns that will be involved
in such joins be declared by the application ahead of time, so that matching keys are used for layer
OPE-JOIN of those columns; otherwise, the same key will be used for all columns at layer OPE-JOIN.
Fortunately, range joins are rare; they are not used in any of our example applications, and are used in
only 50 out of 128,840 columns in a large SQL query trace we describe in §8, corresponding to just
three distinct applications.

JOIN-AD]J construction. Our algorithm uses elliptic-curve cryptography (ECC). JOIN-ADJg (v)
is computed as

JOIN-ADIg (v) := PKPRFk (v) 10))

where K is the initial key for that table, column, onion, and layer, P is a point on an elliptic curve (being
a public parameter), and PRF, is a pseudo-random function [20] mapping values to a pseudorandom
number, such as AESk, (SHA(v)), with Ky being a key that is the same for all columns and derived
from MK. The “exponentiation” is in fact repeated geometric addition of elliptic curve points; it is
considerably faster than RSA exponentiation.

When a query joins columns ¢ and ¢/, each having keys K and K’ at the join layer, the proxy
computes AK = K/K’ (in an appropriate group) and sends it to the server. Then, given JOIN-ADJg (v)
(the JOIN-ADJ values from column ¢’) and AK, the DBMS server uses a UDF to adjust the key in ¢’
by computing:

(JOIN-ADI g (v))K = pK'PRFk, (v)-(K/K')
= PKPRFi (V) — JOIN-ADJg (v).

Now columns ¢ and ¢’ share the same JOIN-ADJ key, and the DBMS server can perform an equi-join
on ¢ and ¢’ by taking the JOIN-ADJ component of the JOIN onion ciphertext.

At a high level, the security of this scheme is that the server cannot infer join relations among
groups of columns that were not requested by legitimate join queries, and that the scheme does not
reveal the plaintext. We proved the security of this scheme based on the standard Elliptic-Curve
Decisional Diffie-Hellman hardness assumption, and implemented it using a NIST-approved elliptic
curve. We plan to publish a more detailed description of this algorithm and the proof on our web
site [37].

3.5 Improving Security and Performance

Although CryptDB can operate with an unmodified and unannotated schema, as described above, its
security and performance can be improved through several optional optimizations, as described below.

3.5.1 Security Improvements

Minimum onion layers. Application developers can specify the lowest onion encryption layer
that may be revealed to the server for a specific column. In this way, the developer can ensure that the
proxy will not execute queries exposing sensitive relations to the server. For example, the developer
could specify that credit card numbers should always remain at RND or DET.

In-proxy processing. Although CryptDB can evaluate a number of predicates on the server,
evaluating them in the proxy can improve security by not revealing additional information to the server.
One common use case is a SELECT query that sorts on one of the selected columns, without a LIMIT
on the number of returned columns. Since the proxy receives the entire result set from the server,
sorting these results in the proxy does not require a significant amount of computation, and does not
increase the bandwidth requirements. Doing so avoids revealing the OPE encryption of that column to
the server.

Training mode. CryptDB provides a training mode, which allows a developer to provide a trace of
queries and get the resulting onion encryption layers for each field, along with a warning in case some
query is not supported. The developer can then examine the resulting encryption levels to understand
what each encryption scheme leaks, as described in §2.1. If some onion level is too low for a sensitive
field, she should arrange to have the query processed in the proxy (as described above), or to process
the data in some other fashion, such as by using a local instance of SQLite.

Onion re-encryption. In cases when an application performs infrequent queries requiring a low
onion layer (e.g., OPE), CryptDB could be extended to re-encrypt onions back to a higher layer after
the infrequent query finishes executing. This approach reduces leakage to attacks happening in the
time window when the data is at the higher onion layer.

3.5.2 Performance Optimizations

Developer annotations. By default, CryptDB encrypts all fields and creates all applicable onions
for each data item based on its type. If many columns are not sensitive, the developer can instead
provide explicit annotations indicating the sensitive fields (as described in §4), and leave the remaining
fields in plaintext.

Known query set. If the developer knows some of the queries ahead of time, as is the case for
many web applications, the developer can use the training mode described above to adjust onions
to the correct layer a priori, avoiding the overhead of runtime onion adjustments. If the developer
provides the exact query set, or annotations that certain functionality is not needed on some columns,
CryptDB can also discard onions that are not needed (e.g., discard the Ord onion for columns that
are not used in range queries, or discard the Search onion for columns where keyword search is not
performed), discard onion layers that are not needed (e.g., the adjustable JOIN layer, if joins are known
a priori), or discard the random IV needed for RND for some columns.

Ciphertext pre-computing and caching. The proxy spends a significant amount of time encrypt-
ing values used in queries with OPE and HOM. To reduce this cost, the proxy pre-computes (for
HOM) and caches (for OPE) encryptions of frequently used constants under different keys. Since
HOM is probabilistic, ciphertexts cannot be reused. Therefore, in addition, the proxy pre-computes
HOM’s Paillier r* randomness values for future encryptions of any data. This optimization reduces the
amount of CPU time spent by the proxy on OPE encryption, and assuming the proxy is occasionally
idle to perform HOM pre-computation, it removes HOM encryption from the critical path.

4 MULTIPLE PRINCIPALS

We now extend the threat model to the case when the application infrastructure and proxy are also
untrusted (threat 2). This model is especially relevant for a multi-user web site running a web and
application server. To understand both the problems faced by a multi-user web application and
CryptDB’s solution to these problems, consider phpBB, a popular online web forum. In phpBB, each
user has an account and a password, belongs to certain groups, and can send private messages to other
users. Depending on their groups’ permissions, users can read entire forums, only forum names, or
not be able to read a forum at all.

There are several confidentiality guarantees that would be useful in phpBB. For example, we
would like to ensure that a private message sent from one user to another is not visible to anyone
else; that posts in a forum are accessible only to users in a group with access to that forum; and that
the name of a forum is shown only to users belonging to a group that’s allowed to view it. CryptDB

provides these guarantees in the face of arbitrary compromises, thereby limiting the damage caused by
a compromise.

Achieving these guarantees requires addressing two challenges. First, CryptDB must capture the
application’s access control policy for shared data at the level of SQL queries. To do this, CryptDB
requires developers to annotate their database schema to specify principals and the data that each
principal has access to, as described in §4.1.

The second challenge is to reduce the amount of information that an adversary can gain by
compromising the system. Our solution limits the leakage resulting from a compromised application
or proxy server to just the data accessible to users who were logged in during the compromise. In
particular, the attacker cannot access the data of users that were not logged in during the compromise.
Leaking the data of active users in case of a compromise is unavoidable: given the impracticality
of arbitrary computation on encrypted data, some data for active users must be decrypted by the
application.

In CryptDB, each user has a key (e.g., her application-level password) that gives her access to
her data. CryptDB encrypts different data items with different keys, and enforces the access control
policy using chains of keys starting from user passwords and ending in the encryption keys of SQL
data items, as described in §4.2. When a user logs in, she provides her password to the proxy (via the
application). The proxy uses this password to derive onion keys to process queries on encrypted data,
as presented in the previous section, and to decrypt the results. The proxy can decrypt only the data
that the user has access to, based on the access control policy. The proxy gives the decrypted data to
the application, which can now compute on it. When the user logs out, the proxy deletes the user’s key.

4.1 Policy Annotations

To express the data privacy policy of a database-backed application at the level of SQL queries, the
application developer can annotate the schema of a database in CryptDB by specifying, for any subset
of data items, which principal has access to it. A principal is an entity, such as a user or a group,
over which it is natural to specify an access policy. Each SQL query involving an annotated data item
requires the privilege of the corresponding principal. CryptDB defines its own notion of principals
instead of using existing DBMS principals for two reasons: first, many applications do not map
application-level users to DBMS principals in a sufficiently fine-grained manner, and second, CryptDB
requires explicit delegation of privileges between principals that is difficult to extract in an automated
way from an access control list specification.

An application developer annotates the schema using the three steps described below and illustrated
in Figure 4. In all examples we show, italics indicate table and column names, and bold text indicates
annotations added for CryptDB.

Step 1. The developer must define the principal types (using PRINCTYPE) used in her application,
such as users, groups, or messages. A principal is an instance of a principal type, e.g., principal 5 of
type user. There are two classes of principals: external and internal. External principals correspond to
end users who explicitly authenticate themselves to the application using a password. When a user
logs into the application, the application must provide the user password to the proxy so that the user
can get the privileges of her external principal. Privileges of other (internal) principals can be acquired
only through delegation, as described in Step 3. When the user logs out, the application must inform
the proxy, so that the proxy forgets the user’s password as well as any keys derived from the user’s
password.

Step 2. The developer must specify which columns in her SQL schema contain sensitive data,
along with the principals that should have access to that data, using the ENC_FOR annotation. CryptDB
requires that for each private data item in a row, the name of the principal that should have access to
that data be stored in another column in the same row. For example, in Figure 4, the decryption of
msgtext x37a21f is available only to principal 5 of type msg.

Step 3. Programmers can specify rules for how to delegate the privileges of one principal to other
principals, using the speaks-for relation [49]. For example, in phpBB, a user should also have the
privileges of the groups she belongs to. Since many applications store such information in tables,
programmers can specify to CryptDB how to infer delegation rules from rows in an existing table.
In particular, programmers can annotate a table 7 with (¢ x) SPEAKS_FOR (b y). This annotation
indicates that each row present in that table specifies that principal a of type x speaks for principal

PRINCTYPE physical_user EXTERNAL;
PRINCTYPE user, msg;

CREATE TABLE privimsgs (
msgid int,
subject varchar(255) ENC_FOR (msgid msg),
msgtext text ENC_FOR (msgid msg));

CREATE TABLE privmsgs_to (
msgid int, rept_id int, sender_id int,
(sender_id user) SPEAKS FOR (msgid msg),
(reptid user) SPEAKS _FOR (msgid msg));

CREATE TABLE users (
userid int, username varchar(255),
(username physical_user) SPEAKS FOR (userid user));

Example table contents, without anonymized column names:

Table privinsgs
msgid | subject msgtext
5 xcoB2fa | x37a2lf Laple users
userid | username
. 1 ‘Alice’

. Table przvmsgs,to 4) ‘Bob’
msgid rept_id sender_id
5 1 2

Figure 4: Part of phpBB’s schema with annotations to secure private messages. Only the sender and
receiver may see the private message. An attacker that gains complete access to phpBB and the DBMS can
access private messages of only currently active users.

b of type y, meaning that a has access to all keys that b has access to. Here, x and y must always
be fixed principal types. Principal b is always specified by the name of a column in table 7. On
the other hand, a can be either the name of another column in the same table, a constant, or 72.col,
meaning all principals from column col of table 72. For example, in Figure 4, principal “Bob” of type
physical _user speaks for principal 2 of type user, and in Figure 6, all principals in the contactld column
from table PCMember (of type contact) speak for the paperld principal of type review. Optionally, the
programmer can specify a predicate, whose inputs are values in the same row, to specify a condition
under which delegation should occur, such as excluding conflicts in Figure 6. §5 provides more
examples of using annotations to secure applications.

4.2 Key Chaining

Each principal (i.e., each instance of each principal type) is associated with a secret, randomly chosen
key. If principal B speaks for principal A (as a result of some SPEAKS_FOR annotation), then principal
A’s key is encrypted using principal B’s key, and stored as a row in the special access_keys table in
the database. This allows principal B to gain access to principal A’s key. For example, in Figure 4, to
give users 1 and 2 access to message 5, the key of msg 5 is encrypted with the key of user 1, and also
separately encrypted with the key of user 2.

Each sensitive field is encrypted with the key of the principal in the ENC_FOR annotation. CryptDB
encrypts the sensitive field with onions in the same way as for single-principal CryptDB, except that
onion keys are derived from a principal’s key as opposed to a global master key.

The key of each principal is a combination of a symmetric key and a public—private key pair. In the
common case, CryptDB uses the symmetric key of a principal to encrypt any data and other principals’
keys accessible to this principal, with little CPU cost. However, this is not always possible, if some
principal is not currently online. For example, in Figure 4, suppose Bob sends message 5 to Alice, but
Alice (user 1) is not online. This means that CryptDB does not have access to user 1’s key, so it will
not be able to encrypt message 5’s key with user 1’s symmetric key. In this case, CryptDB looks up

the public key of the principal (i.e., user 1) in a second table, public_keys, and encrypts message 5’s
key using user 1’s public key. When user 1 logs in, she will be able to use the secret key part of her
key to decrypt the key for message 5 (and re-encrypt it under her symmetric key for future use).

For external principals (i.e., physical users), CryptDB assigns a random key just as for any other
principal. To give an external user access to the corresponding key on login, CryptDB stores the key
of each external principal in a third table, external_keys, encrypted with the principal’s password. This
allows CryptDB to obtain a user’s key given the user’s password, and also allows a user to change her
password without changing the key of the principal.

When a table with a SPEAKS_FOR relation is updated, CryptDB must update the access_keys table
accordingly. To insert a new row into access_keys for a new SPEAKS_FOR relation, the proxy must have
access to the key of the principal whose privileges are being delegated. This means that an adversary
that breaks into an application or proxy server cannot create new SPEAKS_FOR relations for principals
that are not logged in, because neither the proxy nor the adversary have access to their keys. If a
SPEAKS_FOR relation is removed, CryptDB revokes access by removing the corresponding row from
access_keys.

When encrypting data in a query or decrypting data from a result, CryptDB follows key chains
starting from passwords of users logged in until it obtains the desired keys. As an optimization, when
a user logs in, CryptDB’s proxy loads the keys of some principals to which the user has access (in
particular, those principal types that do not have too many principal instances—e.g., for groups the
user is in, but not for messages the user received).

Applications inform CryptDB of users logging in or out by issuing INSERT and DELETE SQL
queries to a special table cryptdb_active that has two columns, username and password. The proxy
intercepts all queries for cryptdb_active, stores the passwords of logged-in users in memory, and never
reveals them to the DBMS server.

CryptDB guards the data of inactive users at the time of an attack. If a compromise occurs,
CryptDB provides a bound on the data leaked, allowing the administrators to not issue a blanket
warning to all the users of the system. In this respect, CryptDB is different from other approaches
to database security (see §9). However, some special users such as administrators with access to a
large pool of data enable a larger compromise upon an attack. To avoid attacks happening when the
administrator is logged in, the administrator should create a separate user account with restricted
permissions when accessing the application as a regular user. Also, as good practice, an application
should automatically log out users who have been inactive for some period of time.

5 APPLICATION CASE STUDIES

In this section, we explain how CryptDB can be used to secure three existing multi-user web ap-
plications. For brevity, we show simplified schemas, omitting irrelevant fields and type specifiers.
Overall, we find that once a programmer specifies the principals in the application’s schema, and
the delegation rules for them using SPEAKS_FOR, protecting additional sensitive fields just requires
additional ENC_FOR annotations.

phpBB is a widely used open source forum with a rich set of access control settings. Users are
organized in groups; both users and groups have a variety of access permissions that the application
administrator can choose. We already showed how to secure private messages between two users
in phpBB in Figure 4. A more detailed case is securing access to posts, as shown in Figure 5. This
example shows how to use predicates (e.g., IF optionid=...) toimplement a conditional speaks-for
relation on principals, and also how one column (forumid) can be used to represent multiple principals
(of different type) with different privileges. There are more ways to gain access to a post, but we omit
them here for brevity.

HotCRP is a popular conference review application [27]. A key policy for HotCRP is that
PC members cannot see who reviewed their own (or conflicted) papers. Figure 6 shows CryptDB
annotations for HotCRP’s schema to enforce this policy. Today, HotCRP cannot prevent a curious or
careless PC chair from logging into the database server and seeing who wrote each review for a paper
that she is in conflict with. As a result, conferences often set up a second server to review the chair’s
papers or use inconvenient out-of-band emails. With CryptDB, a PC chair cannot learn who wrote
each review for her paper, even if she breaks into the application or database, since she does not have

PRINCTYPE physical_user EXTERNAL;
PRINCTYPE user, group, forum_post, forum_name;

CREATE TABLE users (userid int, username varchar(255),
(username physical_user) SPEAKS _FOR (userid user));

CREATE TABLE usergroup (userid int, groupid int,
(userid user) SPEAKS FOR (groupid group));

CREATE TABLE aclgroups (groupid int, forumid int, optionid int,
(groupid group) SPEAKS _FOR (forumid forum_post)
IF optionid=20,
(groupid group) SPEAKS _FOR (forumid forum_name)
IF optionid=14);

CREATE TABLE posts (postid int, forumid int,
post text ENC_FOR (forumid forum_post));

CREATE TABLE forum (forumid int,
name varchar(255) ENC_FOR (forumid forum_name));

Figure 5: Annotated schema for securing access to posts in phpBB. A user has access to see the content of
posts in a forum if any of the groups that the user is part of has such permissions, indicated by optionid 20 in
the aclgroups table for the corresponding forumid and groupid. Similarly, optionid 14 enables users to see
the forum’s name.

the decryption key.! The reason is that the SQL predicate “NoConflict” checks if a PC member is
conflicted with a paper and prevents the proxy from providing access to the PC chair in the key chain.
(We assume the PC chair does not modify the application to log the passwords of other PC members
to subvert the system.)

grad-apply is a graduate admissions system used by MIT EECS. We annotated its schema
to allow an applicant’s folder to be accessed only by the respective applicant and any faculty us-
ing (reviewers.reviewer_id reviewer), meaning all reviewers, SPEAKS_FOR (candidate_id
candidate) in table candidates,and ... SPEAKS_FOR (letter_id letter) intable letters. The
applicant can see all of her folder data except for letters of recommendation. Overall, grad-apply has
simple access control and therefore simple annotations.

6 DISCUSSION

CryptDB’s design supports most relational queries and aggregates on standard data types, such as
integers and text/varchar types. Additional operations can be added to CryptDB by extending its
existing onions, or adding new onions for specific data types (e.g., spatial and multi-dimensional range
queries [43]). Alternatively, in some cases, it may be possible to map complex unsupported operation
to simpler ones (e.g., extracting the month out of an encrypted date is easier if the date’s day, month,
and year fields are encrypted separately).

There are certain computations CryptDB cannot support on encrypted data. For example, it
does not support both computation and comparison on the same column, such as WHERE salary >
age*2+10. CryptDB can process a part of this query, but it would also require some processing on the
proxy. In CryptDB, such a query should be (1) rewritten into a sub-query that selects a whole column,
SELECT age*2+10 FROM ..., which CryptDB computes using HOM, and (2) re-encrypted in the
proxy, creating a new column (call it aux) on the DBMS server consisting of the newly encrypted
values. Finally, the original query with the predicate WHERE salary > aux should be run. We have
not been affected by this limitation in our test applications (TPC-C, phpBB, HotCRP, and grad-apply).

1Fully implementing this policy would require setting up two PC chairs: a main chair, and a backup chair
responsible for reviews of the main chair’s papers. HotCRP allows the PC chair to impersonate other PC
members, so CryptDB annotations would be used to prevent the main chair from gaining access to keys of
reviewers assigned to her paper.

PRINCTYPE physical_user EXTERNAL;
PRINCTYPE contact, review;

CREATE TABLE Contactlnfo (contactld int, email varchar(120),
(email physical_user) SPEAKS_FOR (contactld contact));

CREATE TABLE PCMember (contactld int);
CREATE TABLE PaperConflict (paperld int, contactld int);
CREATE TABLE PaperReview (
paperld int,
reviewerld int ENC_FOR (paperld review),
commentsToPC text ENC_FOR (paperld review),
(PCMember.contactld contact) SPEAKS_FOR
(paperld review) IF NoConflict(paperld, contactld));

NoConflict (paperld, contactld): /* Define a SQL function */
(SELECT COUNT(*) FROM PaperConflict c WHERE
c.paperld = paperld AND c.contactld = contactld) = 0;

Figure 6: Annotated schema for securing reviews in HotCRP. Reviews and the identity of reviewers
providing the review will be available only to PC members (table PCMember includes PC chairs) who are
not conflicted, and PC chairs cannot override this restriction.

In multi-principal mode, CryptDB cannot perform server-side computations on values encrypted
for different principals, even if the application has the authority of all principals in question, because
the ciphertexts are encrypted with different keys. For some computations, it may be practical for the
proxy to perform the computation after decrypting the data, but for others (e.g., large-scale aggregates)
this approach may be too expensive. A possible extension to CryptDB to support such queries may be
to maintain multiple ciphertexts for such values, encrypted under different keys.

7 IMPLEMENTATION

The CryptDB proxy consists of a C++ library and a Lua module. The C++ library consists of a query
parser; a query encryptor/rewriter, which encrypts fields or includes UDFs in the query; and a result
decryption module. To allow applications to transparently use CryptDB, we used MySQL proxy [47]
and implemented a Lua module that passes queries and results to and from our C++ module. We
implemented our new cryptographic protocols using NTL [44]. Our CryptDB implementation consists
of ~18,000 lines of C++ code and ~150 lines of Lua code, with another ~10,000 lines of test code.

CryptDB is portable and we have implemented versions for both Postgres 9.0 and MySQL 5.1.
Our initial Postgres-based implementation is described in an earlier technical report [39]. Porting
CryptDB to MySQL required changing only 86 lines of code, mostly in the code for connecting to the
MySQL server and declaring UDFs. As mentioned earlier, CryptDB does not change the DBMS; we
implement all server-side functionality with UDFs and server-side tables. CryptDB’s design, and to a
large extent our implementation, should work on top of any SQL DBMS that supports UDFs.

| Databases | Tables | Columns
8,548 | 177,154 | 1,244,216
1,193 18,162 128,840

Complete schema
Used in query

Figure 7: Number of databases, tables, and columns on the sql.mit.edu MySQL server, used for trace
analysis, indicating the total size of the schema, and the part of the schema seen in queries during the trace
period.

8 EXPERIMENTAL EVALUATION

In this section, we evaluate four aspects of CryptDB: the difficulty of modifying an application to
run on top of CryptDB, the types of queries and applications CryptDB is able to support, the level of
security CryptDB provides, and the performance impact of using CryptDB. For this analysis, we use
seven applications as well as a large trace of SQL queries.

We evaluate the effectiveness of our annotations and the needed application changes on the
three applications we described in §5 (phpBB, HotCRP, and grad-apply), as well as on a TPC-C
query mix (a standard workload in the database industry). We then analyze the functionality and
security of CryptDB on three more applications, on TPC-C, and on a large trace of SQL queries.
The additional three applications are OpenEMR, an electronic medical records application storing
private medical data of patients; the web application of an MIT class (6.02), storing students’ grades;
and PHP-calendar, storing people’s schedules. The large trace of SQL queries comes from a popular
MySQL server at MIT, sql.mit.edu. This server is used primarily by web applications running on
scripts.mit.edu, a shared web application hosting service operated by MIT’s Student Information
Processing Board (SIPB). In addition, this SQL server is used by a number of applications that run
on other machines and use sql.mit.edu only to store their data. Our query trace spans about ten
days, and includes approximately 126 million queries. Figure 7 summarizes the schema statistics for
sql.mit.edu; each database is likely to be a separate instance of some application.

Finally, we evaluate the overall performance of CryptDB on the phpBB application and on a query
mix from TPC-C, and perform a detailed analysis through microbenchmarks.

In the six applications (not counting TPC-C), we only encrypt sensitive columns, according
to a manual inspection. Some fields were clearly sensitive (e.g., grades, private message, medical
information), but others were only marginally so (e.g., the time when a message was posted). There
was no clear threshold between sensitive or not, but it was clear to us which fields were definitely
sensitive. In the case of TPC-C, we encrypt all the columns in the database in single-principal mode
so that we can study the performance and functionality of a fully encrypted DBMS. All fields are
considered for encryption in the large query trace as well.

8.1 Application Changes

Figure 8 summarizes the amount of programmer effort required to use CryptDB in three multi-user
web applications and in the single-principal TPC-C queries. The results show that, for multi-principal
mode, CryptDB required between 11 and 13 unique schema annotations (29 to 111 in total), and 2 to 7
lines of code changes to provide user passwords to the proxy, in order to secure sensitive information
stored in the database. Part of the simplicity is because securing an additional column requires just
one annotation in most cases. For the single-principal TPC-C queries, using CryptDB required no
application annotations at all.

8.2 Functional Evaluation

To evaluate what columns, operations, and queries CryptDB can support, we analyzed the queries
issued by six web applications (including the three applications we analyzed in §8.1), the TPC-C
queries, and the SQL queries from sql.mit.edu. The results are shown in the left half of Figure 9.

CryptDB supports most queries; the number of columns in the “needs plaintext” column, which
counts columns that cannot be processed in encrypted form by CryptDB, is small relative to the total
number of columns. For PHP-calendar and OpenEMR, CryptDB does not support queries on certain
sensitive fields that perform string manipulation (e.g., substring and lowercase conversions) or date
manipulation (e.g., obtaining the day, month, or year of an encrypted date). However, if these functions
were precomputed with the result added as standalone columns (e.g., each of the three parts of a date
were encrypted separately), CryptDB would support these queries.

The next two columns, “needs HOM” and “needs SEARCH”, reflect the number of columns for
which that encryption scheme is needed to process some queries. The numbers suggest that these
encryption schemes are important; without these schemes, CryptDB would be unable to support those
queries.

Based on an analysis of the larger sql.mit.edu trace, we found that CryptDB should be able
to support operations over all but 1,094 of the 128,840 columns observed in the trace. The “in-
proxy processing” shows analysis results where we assumed the proxy can perform some lightweight
operations on the results returned from the DBMS server. Specifically, this included any operations
that are not needed to compute the set of resulting rows or to aggregate rows (that is, expressions that
do not appear in a WHERE, HAVING, or GROUP BY clause, or in an ORDER BY clause with a LIMIT, and
are not aggregate operators). With in-proxy processing, CryptDB should be able to process queries
over encrypted data over all but 571 of the 128,840 columns, thus supporting 99.5% of the columns.

Of those 571 columns, 222 use a bitwise operator in a WHERE clause or perform bitwise aggregation,
such as the Gallery2 application, which uses a bitmask of permission fields and consults them in WHERE
clauses. Rewriting the application to store the permissions in a different way would allow CryptDB
to support such operations. Another 205 columns perform string processing in the WHERE clause,
such as comparing whether lowercase versions of two strings match. Storing a keyed hash of the
lowercase version of each string for such columns, similar to the JOIN-ADJ scheme, could support case-
insensitive equality checks for ciphertexts. 76 columns are involved in mathematical transformations
in the WHERE clause, such as manipulating dates, times, scores, and geometric coordinates. 41 columns
invoke the LIKE operator with a column reference for the pattern; this is typically used to check a
particular value against a table storing a list of banned IP addresses, usernames, URLSs, etc. Such a
query can also be rewritten if the data items are sensitive.

8.3 Security Evaluation

To understand the amount of information that would be revealed to the adversary in practice, we
examine the steady-state onion levels of different columns for a range of applications and queries. To
quantify the level of security, we define the MinEnc of a column to be the weakest onion encryption
scheme exposed on any of the onions of a column when onions reach a steady state (i.e., after the
application generates all query types, or after running the whole trace). We consider RND and HOM
to be the strongest schemes, followed by SEARCH, followed by DET and JOIN, and finishing with
the weakest scheme which is OPE. For example, if a column has onion Eq at RND, onion Ord at OPE
and onion Add at HOM, the MinEnc of this column is OPE.

The right side of Figure 9 shows the MinEnc onion level for a range of applications and query
traces. We see that most fields remain at RND, which is the most secure scheme. For example,
OpenEMR has hundreds of sensitive fields describing the medical conditions and history of patients,
but these fields are mostly just inserted and fetched, and are not used in any computation. A number of
fields also remain at DET, typically to perform key lookups and joins. OPE, which leaks order, is used
the least frequently, and mostly for fields that are marginally sensitive (e.g., timestamps and counts of
messages). Thus, CryptDB’s adjustable security provides a significant improvement in confidentiality
over revealing all encryption schemes to the server.

To analyze CryptDB’s security for specific columns that are particularly sensitive, we define a new
security level, HIGH, which includes the RND and HOM encryption schemes, as well as DET for
columns having no repetitions (in which case DET is logically equivalent to RND). These are highly
secure encryption schemes leaking virtually nothing about the data. DET for columns with repeats
and OPE are not part of HIGH as they reveal relations to the DBMS server. The rightmost column in
Figure 9 shows that most of the particularly sensitive columns (again, according to manual inspection)
are at HIGH.

For the sql.mit.edu trace queries, approximately 6.6% of columns were at OPE even with
in-proxy processing; other encrypted columns (93%) remain at DET or above. Out of the columns
that were at OPE, 3.9% are used in an ORDER BY clause with a LIMIT, 3.7% are used in an inequality
comparison in a WHERE clause, and 0.25% are used in a MIN or MAX aggregate operator (some of
the columns are counted in more than one of these groups). It would be difficult to perform these
computations in the proxy without substantially increasing the amount of data sent to it.

Although we could not examine the schemas of applications using sql.mit.edu to determine
what fields are sensitive—mostly due to its large scale—we measured the same statistics as above for
columns whose names are indicative of sensitive data. In particular, the last three rows of Figure 9
show columns whose name contains the word “pass” (which are almost all some type of password),
“content” (which are typically bulk data managed by an application), and “priv”’ (which are typically
some type of private message). CryptDB reveals much less information about these columns than an
average column, almost all of them are supported, and almost all are at RND or DET.

Finally, we empirically validated CryptDB’s confidentiality guarantees by trying real attacks on
phpBB that have been listed in the CVE database [32], including two SQL injection attacks (CVE-
2009-3052 & CVE-2008-6314), bugs in permission checks (CVE-2010-1627 & CVE-2008-7143), and
a bug in remote PHP file inclusion (CVE-2008-6377). We found that, for users not currently logged in,
the answers returned from the DBMS were encrypted; even with root access to the application server,
proxy, and DBMS, the answers were not decryptable.

8.4 Performance Evaluation

To evaluate the performance of CryptDB, we used a machine with two 2.4 GHz Intel Xeon E5620
4-core processors and 12 GB of RAM to run the MySQL 5.1.54 server, and a machine with eight
2.4 GHz AMD Opteron 8431 6-core processors and 64 GB of RAM to run the CryptDB proxy
and the clients. The two machines were connected over a shared Gigabit Ethernet network. The
higher-provisioned client machine ensures that the clients are not the bottleneck in any experiment.
All workloads fit in the server’s RAM.

84.1 TPC-C

We compare the performance of a TPC-C query mix when running on an unmodified MySQL server
versus on a CryptDB proxy in front of the MySQL server. We trained CryptDB on the query set
(83.5.2) so there are no onion adjustments during the TPC-C experiments. Figure 10 shows the
throughput of TPC-C queries as the number of cores on the server varies from one to eight. In all
cases, the server spends 100% of its CPU time processing queries. Both MySQL and CryptDB scale
well initially, but start to level off due to internal lock contention in the MySQL server, as reported
by SHOW STATUS LIKE ’Table%’. The overall throughput with CryptDB is 21-26% lower than
MySQL, depending on the exact number of cores.

To understand the sources of CryptDB’s overhead, we measure the server throughput for different
types of SQL queries seen in TPC-C, on the same server, but running with only one core enabled.
Figure 11 shows the results for MySQL, CryptDB, and a strawman design; the strawman performs
each query over data encrypted with RND by decrypting the relevant data using a UDF, performing
the query over the plaintext, and re-encrypting the result (if updating rows). The results show that
CryptDB’s throughput penalty is greatest for queries that involve a SUM (2.0x less throughput) and
for incrementing UPDATE statements (1.6 less throughput); these are the queries that involve HOM
additions at the server. For the other types of queries, which form a larger part of the TPC-C mix, the
throughput overhead is modest. The strawman design performs poorly for almost all queries because
the DBMS’s indexes on the RND-encrypted data are useless for operations on the underlying plaintext
data. It is pleasantly surprising that the higher security of CryptDB over the strawman also brings
better performance.

To understand the latency introduced by CryptDB’s proxy, we measure the server and proxy
processing times for the same types of SQL queries as above. Figure 12 shows the results. We can
see that there is an overall server latency increase of 20% with CryptDB, which we consider modest.
The proxy adds an average of 0.60 ms to a query; of that time, 24% is spent in MySQL proxy, 23% is
spent in encryption and decryption, and the remaining 53% is spent parsing and processing queries.
The cryptographic overhead is relatively small because most of our encryption schemes are efficient;
Figure 13 shows their performance. OPE and HOM are the slowest, but the ciphertext pre-computing
and caching optimization (§3.5) masks the high latency of queries requiring OPE and HOM. Proxyx
in Figure 12 shows the latency without these optimizations, which is significantly higher for the
corresponding query types. SELECT queries that involve a SUM use HOM but do not benefit from this
optimization, because the proxy performs decryption, rather than encryption.

In all TPC-C experiments, the proxy used less than 20 MB of memory. Caching ciphertexts for
the 30,000 most common values for OPE accounts for about 3 MB, and pre-computing ciphertexts
and randomness for 30,000 values at HOM required 10 MB.

8.4.2 Multi-User Web Applications

To evaluate the impact of CryptDB on application performance, we measure the throughput of phpBB
for a workload with 10 parallel clients, which ensured 100% CPU load at the server. Each client
continuously issued HTTP requests to browse the forum, write and read posts, as well as write and
read private messages. We pre-loaded forums and user mailboxes with messages. In this experiment,
we co-located the MySQL DBMS, the CryptDB proxy, and the web application server on a single-core
machine, to ensure we do not add additional resources for a separate proxy server machine to the
system in the CryptDB configuration. In practice, an administrator would likely run the CryptDB
proxy on another machine for security.

Figure 14 shows the throughput of phpBB in three different configurations: (1) connecting to
a stock MySQL server, (2) connecting to a stock MySQL server through MySQL proxy, and (3)
connecting to CryptDB, with notably sensitive fields encrypted as summarized in Figure 9, which in
turn uses a stock MySQL server to store encrypted data. The results show that phpBB incurs an overall
throughput loss of just 14.5%, and that about half of this loss comes from inefficiencies in MySQL
proxy unrelated to CryptDB. Figure 15 further shows the end-to-end latency for five types of phpBB
requests. The results show that CryptDB adds 7-18 ms (6-20%) of processing time per request.

8.4.3 Storage

CryptDB increases the amount of the data stored in the DBMS, because it stores multiple onions
for the same field, and because ciphertexts are larger than plaintexts for some encryption schemes.
For TPC-C, CryptDB increased the database size by 3.76x, mostly due to cryptographic expansion
of integer fields encrypted with HOM (which expand from 32 bits to 2048 bits); strings and binary
data remains roughly the same size. For phpBB, the database size using an unencrypted system was
2.6 MB for a workload of about 1,000 private messages and 1,000 forum posts generated by 10 users.
The same workload on CryptDB had a database of 3.3 MB, about 1.2 x larger. Of the 0.7 MB increase,
230 KB is for storage of access_keys, 276 KB is for public_keys and external_keys, and 166 KB is due
to expansion of encrypted fields.

8.4.4 Adjustable Encryption

Adjustable query-based encryption involves decrypting columns to lower-security onion levels. Fortu-
nately, decryption for the more-secure onion layers, such as RND, is fast, and needs to be performed
only once per column for the lifetime of the system.”> Removing a layer of RND requires AES
decryption, which our experimental machine can perform at ~200 MB/s per core. Thus, removing an
onion layer is bottlenecked by the speed at which the DBMS server can copy a column from disk for
disk-bound databases.

9 RELATED WORK

Search and queries over encrypted data. Song et al. [46] describe cryptographic tools for perform-
ing keyword search over encrypted data, which we use to implement SEARCH. Amanatidis et al. [2]
propose methods for exact searches that do not require scanning the entire database and could be
used to process certain restricted SQL queries. Bao et al. [3] extend these encrypted search methods
to the multi-user case. Yang et al. [51] run selections with equality predicates over encrypted data.
Evdokimov and Guenther present methods for the same selections, as well as Cartesian products and
projections [15]. Agrawal et al. develop a statistical encoding that preserves the order of numerical
data in a column [1], but it does not have sound cryptographic properties, unlike the scheme we use [4].
Boneh and Waters show public-key schemes for comparisons, subset checks, and conjunctions of such
queries over encrypted data [5], but these schemes have ciphertext lengths that are exponential in the
length of the plaintext, limiting their practical applicability.

When applied to processing SQL on encrypted data, these techniques suffer from some of the
following limitations: certain basic queries are not supported or are too inefficient (especially joins
and order checks), they require significant client-side query processing, users either have to build and
maintain indexes on the data at the server or to perform sequential scans for every selection/search,
and implementing these techniques requires unattractive changes to the innards of the DBMS.

Some researchers have developed prototype systems for subsets of SQL, but they provide no
confidentiality guarantees, require a significant DBMS rewrite, and rely on client-side processing [9,
12, 22]. For example, Hacigumus et al. [22] heuristically split the domain of possible values for
each column into partitions, storing the partition number unencrypted for each data item, and rely
on extensive client-side filtering of query results. Chow et al. [8] require trusted entities and two
non-colluding untrusted DBMSes.

Untrusted servers. SUNDR [28] uses cryptography to provide privacy and integrity in a file
system on top of an untrusted file server. Using a SUNDR-like model, SPORC [16] and Depot [30]

2Unless the administrator periodically re-encrypts data/columns.

show how to build low-latency applications, running mostly on the clients, without having to trust a
server. However, existing server-side applications that involve separate database and application servers
cannot be used with these systems unless they are rewritten as distributed client-side applications to
work with SPORC or Depot. Many applications are not amenable to such a structure.

Companies like Navajo Systems and Ciphercloud provide a trusted application-level proxy that
intercepts network traffic between clients and cloud-hosted servers (e.g., IMAP), and encrypts sensitive
data stored on the server. These products appear to break up sensitive data (specified by application-
specific rules) into tokens (such as words in a string), and encrypt each of these tokens using an
order-preserving encryption scheme, which allows token-level searching and sorting. In contrast,
CryptDB supports a richer set of operations (most of SQL), reveals only relations for the necessary
classes of computation to the server based on the queries issued by the application, and allows chaining
of encryption keys to user passwords, to restrict data leaks from a compromised proxy.

Disk encryption. Various commercial database products, such as Oracle’s Transparent Data
Encryption [34], encrypt data on disk, but decrypt it to perform query processing. As a result, the
server must have access to decryption keys, and an adversary compromising the DBMS software can
gain access to the entire data.

Software security. Many tools help programmers either find or mitigate mistakes in their code
that may lead to vulnerabilities, including static analysis tools like PQL [29, 31] and UrFlow [7],
and runtime tools like Resin [52] and CLAMP [36]. In contrast, CryptDB provides confidentiality
guarantees for user data even if the adversary gains complete control over the application and database
servers. These tools provide no guarantees in the face of this threat, but in contrast, CryptDB cannot
provide confidentiality in the face of vulnerabilities that trick the user’s client machine into issuing
unwanted requests (such as cross-site scripting or cross-site request forgery vulnerabilities in web
applications). As a result, using CryptDB together with these tools should improve overall application
security.

Rizvi et al. [41] and Chlipala [7] specify and enforce an application’s security policy over SQL
views. CryptDB’s SQL annotations can capture most of these policies, except for result processing
being done in the policy’s view, such as allowing a user to view only aggregates of certain data.
Unlike prior systems, CryptDB enforces SQL-level policies cryptographically, without relying on
compile-time or run-time permission checks.

Privacy-preserving aggregates. Privacy-preserving data integration, mining, and aggregation
schemes are useful [26, 50], but are not usable by many applications because they support only
specialized query types and require a rewrite of the DBMS. Differential privacy [14] is complementary
to CryptDB; it allows a trusted server to decide what answers to release and how to obfuscate answers
to aggregation queries to avoid leaking information about any specific record in the database.

Query integrity. Techniques for SQL query integrity can be integrated into CryptDB because
CryptDB allows relational queries on encrypted data to be processed just like on plaintext. These
methods can provide integrity by adding a MAC to each tuple [28, 42], freshness using hash chains [38,
42], and both freshness and completeness of query results [33]. In addition, the client can verify the
results of aggregation queries [48], and provide query assurance for most read queries [45].

Outsourced databases. Curino et al. advocate the idea of a relational cloud [11], a context in
which CryptDB fits well.

10 CONCLUSION

We presented CryptDB, a system that provides a practical and strong level of confidentiality in
the face of two significant threats confronting database-backed applications: curious DBAs and
arbitrary compromises of the application server and the DBMS. CryptDB meets its goals using three
ideas: running queries efficiently over encrypted data using a novel SQL-aware encryption strategy,
dynamically adjusting the encryption level using onions of encryption to minimize the information
revealed to the untrusted DBMS server, and chaining encryption keys to user passwords in a way that
allows only authorized users to gain access to encrypted data.

Our evaluation on a large trace of 126 million SQL queries from a production MySQL server
shows that CryptDB can support operations over encrypted data for 99.5% of the 128,840 columns
seen in the trace. The throughput penalty of CryptDB is modest, resulting in a reduction of 14.5-26%

on two applications as compared to unmodified MySQL. Our security analysis shows that CryptDB
protects most sensitive fields with highly secure encryption schemes for six applications. The developer
effort consists of 11-13 unique schema annotations and 27 lines of source code changes to express
relevant privacy policies for 22—103 sensitive fields in three multi-user web applications.

The source code for our implementation is available for download at http://css.csail.mit.
edu/cryptdb/.

ACKNOWLEDGMENTS

We thank Martin Abadi, Brad Chen, Carlo Curino, Craig Harris, Evan Jones, Frans Kaashoek, Sam
Madden, Mike Stonebraker, Mike Walfish, the anonymous reviewers, and our shepherd, Adrian
Perrig, for their feedback. Eugene Wu and Alvin Cheung also provided useful advice. We also thank
Geoffrey Thomas, Quentin Smith, Mitch Berger, and the rest of the scripts.mit.edu maintainers
for providing us with SQL query traces. This work was supported by the NSF (CNS-0716273 and
1IS-1065219) and by Google.

REFERENCES

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order preserving encryption for numeric data.
In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data,
Paris, France, June 2004.

[2] G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-secure schemes for basic query support
in outsourced databases. In Proceedings of the 21st Annual IFIP WG 11.3 Working Conference
on Database and Applications Security, Redondo Beach, CA, July 2007.

[3] F. Bao, R. H. Deng, X. Ding, and Y. Yang. Private query on encrypted data in multi-user
settings. In Proceedings of the 4th International Conference on Information Security Practice
and Experience, Sydney, Australia, April 2008.

[4] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryption. In
Proceedings of the 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), Cologne, Germany, April 2009.

[5] D. Boneh and B. Waters. Conjunctive, subset, and range queries on encrypted data. In Proceed-
ings of the 4th Conference on Theory of Cryptography, 2007.

[6] A.Chen. GCreep: Google engineer stalked teens, spied on chats. Gawker, September 2010.
http://gawker.com/5637234/.

[7] A. Chlipala. Static checking of dynamically-varying security policies in database-backed appli-
cations. In Proceedings of the 9th Symposium on Operating Systems Design and Implementation,
Vancouver, Canada, October 2010.

[8] S.S. M. Chow, J.-H. Lee, and L. Subramanian. Two-party computation model for privacy-
preserving queries over distributed databases. In Proceedings of the 16th Network and Distributed
System Security Symposium, February 2009.

[9] V. Ciriani, S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Samarati. Keep a
few: Outsourcing data while maintaining confidentiality. In Proceedings of the 14th European
Symposium on Research in Computer Security, September 2009.

[10] M. Cooney. IBM touts encryption innovation; new technology performs calculations on encrypted
data without decrypting it. Computer World, June 2009.

[11] C. Curino, E. P. C. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan, and
N. Zeldovich. Relational cloud: A database-as-a-service for the cloud. In Proceedings of the Sth
Biennial Conference on Innovative Data Systems Research, pages 235-241, Pacific Grove, CA,
January 2011.

http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://gawker.com/5637234/

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and P. Samarati. Balancing
confidentiality and efficiency in untrusted relational DBMSs. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, Washington, DC, October 2003.

A. Desai. New paradigms for constructing symmetric encryption schemes secure against chosen-
ciphertext attack. In Proceedings of the 20th Annual International Conference on Advances in
Cryptology, pages 394-412, August 2000.

C. Dwork. Differential privacy: a survey of results. In Proceedings of the 5th International
Conference on Theory and Applications of Models of Computation, Xi’an, China, April 2008.

S. Evdokimov and O. Guenther. Encryption techniques for secure database outsourcing. Cryp-
tology ePrint Archive, Report 2007/335.

A.J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten. SPORC: Group collaboration
using untrusted cloud resources. In Proceedings of the 9th Symposium on Operating Systems
Design and Implementation, Vancouver, Canada, October 2010.

T. Ge and S. Zdonik. Answering aggregation queries in a secure system model. In Proceedings
of the 33rd International Conference on Very Large Data Bases, Vienna, Austria, September
2007.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. In Advances in Cryptology (CRYPTO), Santa Barbara, CA,
August 2010.

C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, Bethesda, MD, May—June 2009.

O. Goldreich. Foundations of Cryptography: Volume I Basic Tools. Cambridge University Press,
2001.

A. Greenberg. DARPA will spend 20 million to search for crypto’s holy grail. Forbes, April
2011.

H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted data in the
database-service-provider model. In Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, Madison, W1, June 2002.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J.
Feldman, J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryption
keys. In Proceedings of the 17th Usenix Security Symposium, San Jose, CA, July—August 2008.

S. Halevi and P. Rogaway. A tweakable enciphering mode. In Advances in Cryptology (CRYPTO),
2003.

V. Kachitvichyanukul and B. W. Schmeiser. Algorithm 668: H2PEC: Sampling from the
hypergeometric distribution. ACM Transactions on Mathematical Software, 14(4):397-398,
1988.

M. Kantarcioglu and C. Clifton. Security issues in querying encrypted data. In Proceedings
of the 19th Annual IFIP WG 11.3 Working Conference on Database and Applications Security,
Storrs, CT, August 2005.

E. Kohler. Hot crap! In Proceedings of the Workshop on Organizing Workshops, Conferences,
and Symposia for Computer Systems, San Francisco, CA, April 2008.

J. Li, M. Krohn, D. Mazieres, and D. Shasha. Secure untrusted data repository (SUNDR). In
Proceedings of the 6th Symposium on Operating Systems Design and Implementation, pages
91-106, San Francisco, CA, December 2004.

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

(42]

[43]

[44]

V. B. Livshits and M. S. Lam. Finding security vulnerabilities in Java applications with static
analysis. In Proceedings of the 14th Usenix Security Symposium, pages 271-286, Baltimore,
MD, August 2005.

P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: Cloud
storage with minimal trust. In Proceedings of the 9th Symposium on Operating Systems Design
and Implementation, Vancouver, Canada, October 2010.

M. Martin, B. Livshits, and M. Lam. Finding application errors and security flaws using
PQL: a program query language. In Proceedings of the 2005 Conference on Object-Oriented
Programming, Systems, Languages and Applications, pages 365-383, San Diego, CA, October
2005.

National Vulnerability Database. CVE statistics. http://web.nvd.nist.gov/view/vuln/
statistics, February 2011.

V. H. Nguyen, T. K. Dang, N. T. Son, and J. Kung. Query assurance verification for dynamic
outsourced XML databases. In Proceedings of the 2nd Conference on Availability, Reliability
and Security, Vienna, Austria, April 2007.

Oracle Corporation. Oracle advanced security. http://www.oracle.com/technetwork/
database/options/advanced-security/.

P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Proceed-
ings of the 18th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT), Prague, Czech Republic, May 1999.

B. Parno, J. M. McCune, D. Wendlandt, D. G. Andersen, and A. Perrig. CLAMP: Practical
prevention of large-scale data leaks. In Proceedings of the 30th IEEE Symposium on Security
and Privacy, Oakland, CA, May 2009.

R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB web site. http:
//css.csail.mit.edu/cryptdb/.

R. A. Popa, J. R. Lorch, D. Molnar, H. J. Wang, and L. Zhuang. Enabling security in cloud
storage SLAs with CloudProof. In Proceedings of 2011 USENIX Annual Technical Conference,
Portland, OR, 2011.

R. A. Popa, N. Zeldovich, and H. Balakrishnan. CryptDB: A practical encrypted relational
DBMS. Technical Report MIT-CSAIL-TR-2011-005, MIT Computer Science and Artificial
Intelligence Laboratory, Cambridge, MA, January 2011.

Privacy Rights Clearinghouse. Chronology of data breaches. http://www.privacyrights.
org/data-breach.

S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy. Extending query rewriting techniques for
fine-grained access control. In Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, Paris, France, June 2004.

H. Shacham, N. Modadugu, and D. Boneh. Sirius: Securing remote untrusted storage. In
Proceedings of the 10th Network and Distributed System Security Symposium, 2003.

E. Shi, J. Bethencourt, H. Chan, D. Song, and A. Perrig. Multi-dimensional range query over
encrypted data. In Proceedings of the 28th IEEE Symposium on Security and Privacy, Oakland,
CA, May 2007.

V. Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl/, August
2009.

http://web.nvd.nist.gov/view/vuln/statistics
http://web.nvd.nist.gov/view/vuln/statistics
http://www.oracle.com/technetwork/database/options/advanced-security/
http://www.oracle.com/technetwork/database/options/advanced-security/
http://css.csail.mit.edu/cryptdb/
http://css.csail.mit.edu/cryptdb/
http://www.privacyrights.org/data-breach
http://www.privacyrights.org/data-breach
http://www.shoup.net/ntl/

[45]

[46]

[47]

(48]

(49]

[50]

[51]

(52]

R. Sion. Query execution assurance for outsourced databases. In Proceedings of the 31st
International Conference on Very Large Data Bases, pages 601-612, Trondheim, Norway,
August—September 2005.

D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In
Proceedings of the 21st IEEE Symposium on Security and Privacy, Oakland, CA, May 2000.

M. Taylor. MySQL proxy. https://launchpad.net/mysql-proxy.

B. Thompson, S. Haber, W. G. Horne, T. S, and D. Yao. Privacy-preserving computation and
verification of aggregate queries on outsourced databases. Technical Report HPL-2009-119, HP
Labs, 2009.

E. P. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authentication in the Taos operating
system. ACM Transactions on Computer Systems, 12(1):3-32, 1994.

L. Xiong, S. Chitti, and L. Liu. Preserving data privacy for outsourcing data aggregation services.
Technical Report TR-2007-013, Emory University, Department of Mathematics and Computer
Science, 2007.

Z. Yang, S. Zhong, and R. N. Wright. Privacy-preserving queries on encrypted data. In European
Symposium on Research in Computer Security, 2006.

A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security with data
flow assertions. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles,
pages 291-304, Big Sky, MT, October 2009.

https://launchpad.net/mysql-proxy

‘suonjejouue onbrun j10dor osye om ‘(Juejuod pue 309[gns
a3essow “*3-9) Tedround swres ayy Joy paydAIous A[jensn are 9[qe) dwes) Ul SP[AY d[dN[NUI OUIS "UOHLIOUUR YOI SIVAJS B Ul pasn jedrpaid TOS Aue pue suonejouue
Jo sad£) 9a11) INO JO UOIBIOAUI OB UOIIBIOUUE JUO SE JUN0d 9A\ ‘suonedijdde JUaIogJIp 991y) J0J ‘SUONBIOUUR 5 1M SAIN03s gIdAID Jey) Sp[oy 2ANISUIS Jo Joquuinu
oy} pue ‘s1asn jo spromssed oy) pim gidA1D) apiaoid 01 pappe 2q 01 9p0J JO SAUI] ‘SP[AY AANISUIS 2INIJS 0) Ppe 01 spadu Jowwes3oid 9y suonejouue Jo Joquiny :§ NI

pa1dAIoua s9[qes 2y} [[& Ul SP[AY Yl [[® 76 0 0 (ound a3urs) D-Dd.L
SMOIAQI ‘SUOTIBPUWILIOIAI ‘(£]) S9109S (]9) SopeI3 Juapnis 10 soulf ¢ (enbrun ¢1) 117 A1dde-pei3
smaraar ‘voneuriojur aded pue juayuod raded 7z saul| g (enbrun z71) 67 dADIOH
swnioj ‘sysod ‘(309[qns ‘yuayuoo) soFessowr ajeard :¢g souif / (enbrun [71) 1¢ qggdyd

SPI9Y yons Jo sapdurexa pue ‘paandas SpRY IARISUIS IPod Inogoj/urdo| suonejoUUY | uonedddy

*(€°8§ U1 pauyop aIe suLd) §10q) HOJH Ul SUFUIIA 2ABY JBy) Way) Jo Iquunu dy) s10dal pue ‘suwnjod aseqeiep dANIsuas jsou s, uonedrjdde
Q) SIOPISUOD UWN(OD JsounySL1 Y], ‘uondAIous J0J paIopIsuod A[[edneuioine 2I9m SUWN[od aseqelep [[e ‘smol Jo dnois wonoq ay) 104 "uondAIous 10 pAIoPISUOd 1M
SuWnN(od 9saY) A[UO pue ‘A[[enUeLl PAUTULIDAP 2I9M SUWN[OD JANISUIS ‘smol Jo dnoi3 doy ayy ur suoneorjdde oy 1o “uwnjods jey) 10j ejep paydA1ous 1940 sorronb s uoneordde
Ay 2INdax9 Jouued gqdA1D yeys sajeorpur Jxajured spasy],, ‘seoer) pue suonedsljdde jo a3uer e £q pairnbar suwin[od aseqeIep J0J S[IAJ] UOTUO JJe)S-ApealS @ dINSIY

— 4 4 0 651 0 ¥ 0 €Ll €L1 An4d SUIeUOd dWeU [0d *
— € 1SC 43 SIT'e 49 0 0 128°C [TS'T |Ju21u05 SUreyuod sweu [0d "
— 0 16 0 9¢6°1 0 0 4 620°C 620°C $SDd SUIEIUOD SWIeU "[0D
— €16'8 0SE€'SE 86€ 80078 | SEI‘1 910°1 ILS 0v8'8C1 0v8°8zI| Surssaoord Axoid-ur yim -
— IELEl TITPE 0SE €50°08 | STI‘l 610°1 ¥60°1 0v8‘8Tl 0¥8‘8TI npa - 1Tw" Ths wouy aoel],
— 8 61 0 S9 0 8 0 6 6 D-DdL
v/€ i v 4 € 4 0 14 41 154 Tepud[ed-dHd
1/1 4 ¥ 0 L 0 0 0 ¢l Sl 209 LIN
0tS / $TS 61 4! 4 9Ts € 0 L 99¢ L6T'1 ANFudo
6/ ¥6 4 9 0 6 4 0 0 €01 90L A1dde-peis
81 /81 4 I I 81 I 4 0 w 0T d9D10H
9/9 I I 0 14 0 I 0 €T €96 ggqduyd
HOIHE'S[0d | Hd0 LAd HOIVAS ANY | HOUVAS JWOH Ixdqjued dud oy °s[od woneondd
AANISUIS JSOJAI SDUHUIA YIM S[0d Jxure[d-uoN SPIdAN SPIdIN SPIdAN J9pIsuo) [ejo, neanddy

50000

40000
3
2 30000
ki
5}
S 20000
o
10000 ¢ MySQL —e—
CryptDB —+—
0 i i i 1 I i
1 2 3 4 5 6 7 8

Number of server cores

Figure 10: Throughput for TPC-C queries, for a varying number of cores on the underlying MySQL DBMS
server.

14000 - MySQL
CryptDB X3

12000 - Strawman

10000

8000

6000

Queries / sec

4000

2000

JZIO) (4 S,
(}é x

Figure 11: Throughput of different types of SQL queries from the TPC-C query mix running under MySQL,
CryptDB, and the strawman design. “Upd. inc” stands for UPDATE that increments a column, and “Upd. set”
stands for UPDATE which sets columns to a constant.

MySQL CryptDB

Server Server | Proxy | Proxyx
Selectby = (DET) | 0.10 ms 0.11ms | 0.86 ms| 0.86 ms
Selectjoin (JOIN) | 0.10 ms 0.11ms | 0.75ms| 0.75ms
Selectrange (OPE) | 0.16 ms 0.22ms | 0.78 ms| 28.7 ms
Select sum (HOM) | 0.11 ms 0.46ms | 0.99ms| 0.99 ms
Delete 0.07ms | 0.08ms | 0.28 ms| 0.28 ms
Insert (all) | 0.08ms | 0.10ms | 0.37ms| 16.3 ms
Update set (all) | 0.11ms | 0.14ms | 0.36 ms| 3.80ms
Update inc (HOM) | 0.10 ms 0.17ms | 0.30ms| 25.1 ms
Overall 0.10ms | 0.12ms | 0.60 ms| 10.7 ms

Query (& scheme)

Figure 12: Server and proxy latency for different types of SQL queries from TPC-C. For each query type,
we show the predominant encryption scheme used at the server. Due to details of the TPC-C workload, each
query type affects a different number of rows, and involves a different number of cryptographic operations.
The left two columns correspond to server throughput, which is also shown in Figure 11. “Proxy” shows the
latency added by CryptDB’s proxy; “Proxyx” shows the proxy latency without the ciphertext pre-computing
and caching optimization (§3.5). Bold numbers show where pre-computing and caching ciphertexts helps.
The “Overall” row is the average latency over the mix of TPC-C queries. “Update set” is an UPDATE where
the fields are set to a constant, and “Update inc” is an UPDATE where some fields are incremented.

Scheme Encrypt Decrypt Special operation
Blowfish (1 int.) 0.0001 ms 0.0001 ms —
AES-CBC (1 KB) 0.008 ms 0.007 ms —
AES-CMC (1 KB) | 0.016 ms 0.015 ms —

OPE (1 int.) 9.0 ms 9.0 ms Compare: 0 ms
SEARCH (1 word) | 0.01 ms 0.004 ms Match: 0.001 ms
HOM (1 int.) 9.7 ms 0.7 ms Add: 0.005 ms
JOIN-ADJ (1 int.) 0.52 ms — Adjust: 0.56 ms

Figure 13: Microbenchmarks of cryptographic schemes, per unit of data encrypted (one 32-bit integer,
1 KB, or one 15-byte word of text), measured by taking the average time over many iterations.

18 - -8.3%
16 -
14 -
12 -

-14.5%

Throughput (HTTP req. / sec)
)
T

S N B~ O ©
T

MySQL MySQL+proxy CryptDB

Figure 14: Throughput comparison for phpBB. “MySQL” denotes phpBB running directly on MySQL.
“MySQL+proxy” denotes phpBB running on an unencrypted MySQL database but going through MySQL
proxy. “CryptDB” denotes phpBB running on CryptDB with notably sensitive fields annotated and the
database appropriately encrypted. Most HTTP requests involved tens of SQL queries each. Percentages
indicate throughput reduction relative to MySQL.

DB \ Login Rpost Wpost Rmsg Wmsg
MySQL | 60ms 50ms 133ms 6lms 237 ms
CryptDB | 67ms 60ms 151ms 73ms 251 ms

Figure 15: Latency for HTTP requests that heavily use encrypted fields in phpBB for MySQL and CryptDB.
R and W stand for read and write.

	Introduction
	Security Overview
	Threat 1: DBMS Server Compromise
	Threat 2: Arbitrary Threats

	Queries over Encrypted Data
	SQL-aware Encryption
	Adjustable Query-based Encryption
	Executing over Encrypted Data
	Computing Joins
	Improving Security and Performance
	Security Improvements
	Performance Optimizations

	Multiple Principals
	Policy Annotations
	Key Chaining

	Application Case Studies
	Discussion
	Implementation
	Experimental Evaluation
	Application Changes
	Functional Evaluation
	Security Evaluation
	Performance Evaluation
	TPC-C
	Multi-User Web Applications
	Storage
	Adjustable Encryption

	Related Work
	Conclusion

