
An Empirical Study on Configuration
Errors in Commercial and Open Source

Systems

Zuoning Yin∗, Xiao Ma∗, Jing Zheng†, Yuanyuan Zhou†,
Lakshmi N. Bairavasundaram‡, and Shankar Pasupathy‡

∗Univ. of Illinois at Urbana-Champaign, †Univ. of California, San Diego, ‡NetApp, Inc.

ABSTRACT
Configuration errors (i.e., misconfigurations) are among the dominant causes of system
failures. Their importance has inspired many research efforts on detecting, diagnosing,
and fixing misconfigurations; such research would benefit greatly from a real-world charac-
teristic study on misconfigurations. Unfortunately, few such studies have been conducted
in the past, primarily because historical misconfigurations usually have not been recorded
rigorously in databases.

In this work, we undertake one of the first attempts to conduct a real-world misconfigura-
tion characteristic study. We study a total of 546 real world misconfigurations, including
309 misconfigurations from a commercial storage system deployed at thousands of cus-
tomers, and 237 from four widely used open source systems (CentOS, MySQL, Apache
HTTP Server, and OpenLDAP). Some of our major findings include: (1) A majority of
misconfigurations (70.0%∼85.5%) are due to mistakes in setting configuration parame-
ters; however, a significant number of misconfigurations are due to compatibility issues
or component configurations (i.e., not parameter-related). (2) 38.1%∼53.7% of parameter
mistakes are caused by illegal parameters that clearly violate some format or rules, mo-
tivating the use of an automatic configuration checker to detect these misconfigurations.
(3) A significant percentage (12.2%∼29.7%) of parameter-based mistakes are due to incon-
sistencies between different parameter values. (4) 21.7%∼57.3% of the misconfigurations
involve configurations external to the examined system, some even on entirely different
hosts. (5) A significant portion of misconfigurations can cause hard-to-diagnose failures,
such as crashes, hangs, or severe performance degradation, indicating that systems should
be better-equipped to handle misconfigurations.

Categories and Subject Descriptors: D.4.5 [Operating Systems]: Reliability

General Terms: Reliability, Management

Keywords: Misconfigurations, characteristic study

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

1. INTRODUCTION

1.1 Motivation
Configuration errors (i.e., misconfigurations) have a great impact on system availability.
For example, a recent misconfiguration at Facebook prevented its 500 million users from
accessing the website for several hours [15]. Last year, a misconfiguration brought down
the entire “.se” domain for more than an hour [6], affecting almost 1 million hosts.

Not only do misconfigurations have high impact, they are also prevalent. Gray’s pioneer-
ing paper on system faults [11] stated that administrator errors were responsible for 42%
of system failures in high-end mainframes. Similarly, Patterson et al. [30] observed that
more than 50% of failures were due to operator errors in telephone networks and Internet
systems. Studies have also observed that a majority of operator errors (or administra-
tor errors) are misconfigurations [23, 29]. Further, of the issues reported in COMP-A’s1

customer-support database (used in this study), around 27% are labeled as configuration-
related (as shown later in Figure 1(a) in Section 3). This percentage is second only to
hardware failures and is much bigger than that of software bugs.

Moreover, configuration errors are also expensive to troubleshoot. Kappor [16] found that
17% of the total cost of ownership of today’s desktop computers goes toward technical
support, and a large fraction of that is troubleshooting misconfigurations.

Given the data on the prevalence and impact of misconfigurations, several recent research
efforts [3, 17, 18, 35, 38, 41] have proposed ideas to detect, diagnose, and automatically fix
misconfigurations. For example, PeerPressure [38] uses statistics methods on a large set of
configurations to identify single configuration parameter errors. Chronus [41] periodically
checkpoints disk state and automatically searches for configuration changes that may have
caused the misconfiguration.ConfAid [3] uses data flow analysis to trace the configuration
error back to a particular configuration entry. AutoBash [35] leverages a speculative OS
kernel to automatically try out fixes from a solution database in order to find a proper so-
lution for a configuration problem. Further, ConfErr [17] provides a useful framework with
which users can inject configuration errors of three types: typos, structural mistakes, and
semantic mistakes. In addition to research efforts, various tools are available to aid users in
managing system configuration; for example, storage systems have provisioning tools [13,
14, 25, 26], misconfiguration-detection tools [24], and upgrade assistants that check for
compatibility issues [24]. The above research directions and tools would benefit greatly
from a characteristic study of real-world misconfigurations. Moreover, understanding the
major types and root causes of misconfigurations may help guide developers to better
design configuration logic and requirements, and testers to better verify user interfaces,
thereby reducing the likelihood of configuration mistakes by users.

Unfortunately, in comparison to software bugs that have well-maintained bug databases
and have benefited from many software bug characteristic studies [5, 19, 36, 37], a miscon-
figuration characteristic study is much harder, mainly because historical misconfigurations
usually have not been recorded rigorously in databases. For example, developers record
information about the context in the code for bugs, the causes of bugs, and how they were
fixed; they also focus on eliminating or coalescing duplicate bug reports. On the other
hand, the description of misconfigurations is user-driven, the fixes may be recorded simply
as pointers to manuals and best-practice documents, and there is no duplicate elimination.
As a result, analyzing and understanding misconfigurations is a much harder, and more
importantly, manual task.

1We are required to keep the company anonymous.

1.2 Our Contributions
In this paper, we perform one of the first characteristic studiessystems, using a total of
546 misconfiguration cases. The commercial system is a storage system from COMP-A de-
ployed at thousands of customers. It has a well-maintained customer-issues database. The
open-source systems includewidely used system software: CentOS, MySQL, Apache, and
OpenLDAP. The misconfiguration issues we examine are primarily user-reported.Therefore,
our study is a manual analysis of user descriptions ofmisconfigurations, aided by discus-
sions withdevelopers, support engineers, and system architects of these systems to ensure
correct understanding of these cases.Our study was approximately 21 person-months of
effort, excluding the help fromseveral COMP-A engineers and open-source developers.

We study the types, patterns, causes, system reactions, and impact of misconfigurations:

• We examine the prevalence and reported severity of configuration issues (includes,
but not limited to misconfigurations) as compared to other support issues in COMP-
A’s customer-issues database.

• We develop a simple taxonomy of misconfiguration types: parameter, compatibility,
and component, and identify the prevalence of each type. Given the prevalence
of parameter-based misconfigurations, we further analyze its types and observable
patterns.

• We identify how systems react to misconfigurations: whether error messages are pro-
vided, whether systems experience failures or severe performance issues, etc. Given
that error messages are important for diagnosis and fixes, we also investigate the
relationship between message clarity and diagnosis time.

• We study the frequency of different causes of misconfigurations such as first-time use,
software upgrades, hardware changes, etc.

• Finally, we examine the impact of misconfigurations, including the impact on system
availability and performance.

The major findings of the study are summarized in Table 1. While we believe that the
misconfiguration cases we examined are fairly representative of misconfigurations in large
system software, we do not intend to draw any general conclusions about all applications.
In particular, we remind readers that all of the characteristics and findings in this study
should be taken with the specific system types and our methodology in mind (discussed
in Section 2).

We will release our open-source misconfiguration cases to share with the research commu-
nity.

2. METHODOLOGY
This section describes our methodology for analyzing misconfigurations. There are unique
challenges in obtaining and analyzing a large set of real-world misconfigurations. Histor-
ically, unlike bugs that usually have Bugzillas as repositories, misconfigurations are not
recorded rigorously. Much of the information is in the form of unstructured textual de-
scriptions and there is no systematic way to report misconfiguration cases. Therefore, in
order to overcome these challenges, we manually analyzed reported misconfiguration cases
by studying manuals, instructions, source code, and knowledge bases of each system. For
some hard cases, we contacted the corresponding engineers through emails or phone calls
to understand them thoroughly.

Major Findings on Prevalence and Severity of Configuration Issues (Section 3)
Similar to results from previous studies [11, 29, 30], data from COMP-A shows that a significant
portion (27%) of customer cases are related to configuration issues.
Configuration issues cause the largest percentage (31%) of high-severity support requests.

Major Findings on Misconfiguration Types (Section 4)
Configuration-parameter mistakes account for the majority (70.0%∼85.5%) of the examined
misconfigurations.
However, a significant portion (14.5%∼30.0%) of the examined misconfigurations are caused
by software compatibility issues and component configuration, which are not well addressed
in literature.
38.1%∼53.7% of parameter misconfigurations are caused by illegal parameters that violate
formats or semantic rules defined by the system, and can be potentially detected by checkers
that inspect against these rules.
A significant portion (12.2%∼29.7%) of parameter mistakes are due to value-based inconsis-
tency, calling for an inconsistency checker or a better configuration design that does not require
users to worry about such error-prone consistency constraints.
Although most misconfigurations are located within each examined system, still a significant
portion (21.7%∼57.3%) involve configurations beyond the system itself or span over multiple
hosts.

Major Findings on System Reactions to Misconfigurations (Section 5)
Only 7.2%∼15.5% of the studied misconfiguration problems provide explicit messages that
pinpoint the configuration error.
Some misconfigurations have caused the systems to crash, hang or have severe performance
degradation, making failure diagnosis a challenging task.
Messages that pinpoint configuration errors can shorten the diagnosis time by 3 to 13 times as
compared to the cases with ambiguous messages or by 1.2 to 14.5 times as compared to cases
with no messages.

Major Findings on Causes of Misconfigurations (Section 6)
The majority of misconfigurations are related to first-time use of desired functionality. For more
complex systems, a significant percentage (16.7%∼32.4%) of misconfigurations were introduced
into systems that used to work.
By looking into the 100 used-to-work cases (32.4% of the total) at COMP-A, 46% of them
are attributed to configuration parameter changes due to routine maintenance, configuring for
new functionality, system outages, etc, and can benefit from tracking configuration changes.
The remainder are caused by non-parameter related issues such as hardware changes (18%),
external environmental changes (8%), resource exhaustion (14%), and software upgrades(14%).

Major Findings on Impact of Misconfigurations (Section 7)
Although most studied misconfiguration cases only lead to partial unavailability of the system,
16.1%∼47.3% of them make the systems to be fully unavailable or cause severe performance
degradation.

Table 1: Major findings on misconfiguration characteristics. Please take our method-

ology into consideration when you interpret and draw any conclusions.

2.1 Data Sets
We examine misconfiguration data for one commercial system and four open-source sys-
tems. The commercial system is a storage system from COMP-A. The core software
running in such system is proprietary to COMP-A. The four open-source systems include
CentOS, MySQL, Apache HTTP server, and OpenLDAP. We select these software systems
for two reasons: (1) they are mature and widely used, and (2) they have a large set of
misconfiguration cases reported by users. While we cannot draw conclusions about any
general system, our examined systems are representative of large, server-based systems.
We focus only on software misconfigurations; we do not have sufficient data for hardware
misconfigurations on systems running the open-source software.

COMP-A storage systems consist of multiple components including storage controllers,
disk shelves, and interconnections between them (e.g., switches). These systems can be
configured in a variety of ways for customers with different degrees of expertise. For
instance, COMP-A offers tools that simplify system configuration. We cannot ascertain

System Total Cases Sampled Cases Used Cases
COMP-A confidential 1000 309
CentOS 4338 521 60
MySQL 3340 720 55
Apache 8513 616 60

OpenLDAP 1447 472 62
Total N/A 3329 546

Table 2: The systems we studied and the number of misconfiguration cases we

identified for each of them.

from the data whether users configured the systems directly or used tools for configuration.

The misconfiguration cases we study are from COMP-A’s customer-issues database, which
records problems reported by customers. For accuracy, we considered only closed cases,
i.e. cases that COMP-A has provided a solution to the users. Also, to be as relevant as
possible, we focused on only cases over the last two years. COMP-A’s support process is
rigorous, especially in comparison to open-source projects. For example, when a customer
case is closed, the support engineer needs to record information about the root cause as
well as resolution. Such information is very valuable for our study. There are many cases
labeled as “Configuration-related” by support engineers and it is prohibitively difficult
to study all of them. Therefore, we randomly sampled 1,000 cases labeled as related to
configuration. Not all 1,000 cases are misconfigurations because more than half of them are
simply customer questions related to how the system should be configured. Hence, we did
not consider them as misconfigurations. We also pruned out a few cases for which we cannot
determine whether a configuration error occurred. After careful manual examination, we
identified 309 cases as misconfigurations, as shown in Table 2.

Besides COMP-A storage systems, we also study four open-source systems: CentOS,
MySQL, Apache HTTP server, and OpenLDAP. All of them are mature software sys-
tems, well-maintained and widely used. CentOS is an enterprise-class Linux distribution,
MySQL is a database server, Apache is a web server, and OpenLDAP is a directory server.

For open-source software, the misconfiguration cases come from three sources: official user-
support forums, mailing lists, and ServerFault.com (a large question-answering website
focusing on system administration). Whenever necessary, scripts were used to identify
cases related to systems of interest, as well as to remove those that were not confirmed by
users. We then randomly sampled from all the remaining candidate cases (the candidate
set sizes and the sample set sizes are also shown in Table 2) and manually examined
each case to check if it is a misconfiguration. Our manual examination yielded a total
of 237 misconfiguration cases from these four open-source systems. The yield ratio (used
cases/sampled cases) is low for these open-source projects because we observe a higher
ratio of cases that are customer questions among the samples from open source projects
as compared to the commercial data.

2.2 Threats to Validity and Limitations
Many characteristic studies suffer from limitations such as the systems or workloads not be-
ing representative of the entire population, the semantics of events such as failures differing
across different systems, and so on. Given that misconfiguration cases have considerably
less information than ideal to work with, and that we need to perform all of the analysis
manually, our study has a few more limitations. We believe that these limitations do not
invalidate our results; at the same time, we urge the reader to focus on overall trends and
not on precise numbers. We expect that most systems and processes for configuration
errors would have similar limitations to the ones we face. Therefore, we hope that the
limitations of our methodology would inspire techniques and processes that can be used to
record misconfigurations more rigorously and in a format amenable to automated analysis.

Sampling: To make the time and effort manageable, we sampled the data sets. As shown
in Table 2, our sample rates are statistically significant and our collections are also large
enough to be statistically meaningful [10]. In our result tables, we also show the confidence
interval on ratios with a 95% confidence level based on our sampling rates.

Users: The sources from which we sample contain only user-reported cases. Users may
choose not to report trivial misconfigurations. Also, it is more likely that novice users may
report more misconfiguration problems. We do not have sufficient data to judge whether
a user is a novice or an expert. But, with new systems or major revisions of an existing
system deployed to the field, there will always be new users. Therefore, our findings are
still valid.

User environment: Some misconfigurations may have been prevented, or detected and
resolved automatically by the system or other tools. This scenario is particularly true for
COMP-A systems. At the same time, some, but not all, COMP-A customers use the tools
provided by COMP-A and we cannot distinguish the two in the data.

System versions: We do not differentiate between system versions. Given that software
is constantly evolving, it is possible that some of the reported configuration issues may
not apply to some versions, or have already been addressed in system development (e.g.,
automatically correcting configuration mistakes, providing better error messages, etc.).

Overall, our study is representative of user-reported misconfigurations that are more chal-
lenging, urgent, or important.

3. IMPORTANCE OF CONFIGURATION ISSUES
We first examine how prevalent configuration issues are in the field and how severely they
impact users using data from the last two years from COMP-A’s customer-issues database.
There are five root causes classified by COMP-A engineers after resolving each customer-
reported problem: configuration (configuration-related), hardware failure, bug, customer
environment (cases caused by power supplies, cooling systems, or other environmental
issues), and user knowledge (cases where customers request information about the system).
Each case is also labeled with a severity level by customer-support engineers – from “1” to
“4,” based on how severe the problem is in the field; cases with severity level of “1” or “2”
are usually considered as high-severity cases that require prompt responses.

(a) Categorization of problem causes on all
the cases

Configuration
27%

Hardware
Failure

42%

Bug
5%

Customer
Environment

14%

User
Knowledge

12% Configuration
31%

Hardware
Failure

20%

Bug
15%

Customer
Environment

25%

User
Knowledge

9%

(b) Categorization of problem causes on
cases with high severity

Figure 1: Root cause distribution among the customer problems reported to COMP-

A

Figure 1(a) shows the distribution of customer cases based on different root causes. Fig-
ure 1(b) further shows the distribution of high-severity cases. We do not have the results
for the open source systems due to unavailability of such labeled data (i.e., customer issues
caused by hardware, software bugs, configurations, etc.).

Among all five categories, configuration-related issues contribute to 27% of the cases and
are the second-most pervasive root cause of customer problems. While this number is
potentially inflated by customer requests for information on configuration (as seen in our
manual analysis), it shows that system configuration is nontrivial and of particular concern
for customers. Furthermore, considering only high-severity cases, configuration-related
issues become the most significant contributor to support cases; they contribute to 31% of
high-severity cases. We expect that hardware issues are not as severe (smaller percentage
of high-severity cases than of all cases) due to availability of redundancy and ease of fixes
– the hardware can be replaced easily.

Finding 1.1: Similar to the results from previous studies [11, 30, 29], data from COMP-
A shows that a significant percentage (27%) of customer cases are related to configuration
issues.

Finding 1.2: Configuration issues cause the largest percentage (31%) of high-severity
support requests.

4. MISCONFIGURATION TYPES
4.1 Distribution among Different Types

System Parameter Compatibility Component Total
COMP-A 246 (79.6±2.4%) 31 (10.0±1.8%) 32 (10.4±1.8%) 309
CentOS 42 (70.0±3.7%) 11 (18.3±3.1%) 7 (11.7±2.6%) 60
MySQL 47 (85.5±2.3%) 0 8 (14.5±2.3%) 55
Apache 50 (83.4±2.8%) 5 (8.3±2.1%) 5 (8.3±2.1%) 60

OpenLDAP 49 (79.0±3.0%) 7 (11.2±2.3%) 6 (9.7±2.2%) 62

Table 3: The numbers of misconfigurations of each type. Their percentages and the

sampling errors are also shown.

To examine misconfigurations in detail, we first look at the different types of misconfig-
urations that occur in the real world and their distributions. We classify the examined
misconfiguration cases into three categories (as shown in Table 3). Parameter refers to
configuration parameter mistakes; a parameter could be either an entry in a configuration
file or a console command for configuring certain functionality. Compatibility refers to
misconfigurations related to software compatibility (i.e. whether different components or
modules are compatible with each other). Component refers to other remaining software
misconfigurations (e.g., a module is missing).

Finding 2.1: Configuration parameter mistakes account for the majority (70.0%∼85.5%)
of the examined misconfigurations.

Finding 2.2: However, a significant portion (14.5%∼30.0%) of the examined misconfig-
urations are caused by software compatibility and component configuration, which are not
well addressed in literature.

First, Finding 2.1 supports recent research efforts [3, 35, 38, 41] on detecting, diagnosing,
or fixing parameter-based misconfigurations. Second, this finding perhaps indicates that
system designers should have fewer “knobs” (i.e. parameters) for users to configure and
tune. Whenever possible, auto-configuration [44] should be preferred because in many
cases users may not be experienced enough to set the knobs appropriately.

While parameter-based misconfigurations are the most common, Finding 2.2 calls for at-
tention to investigating solutions dealing with non-parameter-based configurations such as
software incompatibility, etc. For example, software may need to be shipped as a complete
package, deployed as an appliance (either virtual or physical), or delivered as a service
(SaaS) to reduce these incompatibilities and general configuration issues.

System Legal

Illegal
Format Value

Lexical Syntax
Typo

Value Inconsistent Value Inconsistent
Others

Mistakes Mistakes w/ Other Values w/ Environment
COMP-A 114(46.3±6.1%) 10(4.1±2.4%) 5(2.0±1.7%) 3(1.2±1.3%) 73 (29.7±5.6%) 32(13.0±4.1%) 9(3.7±2.3%)
CentOS 26 (61.9±13.8%) 1(2.4±4.4%) 0 2(4.8±6.0%) 6 (14.3±10.0%) 6(14.3±10.0%) 1(2.4±6.0%)
MySQL 24(51.1±12.7%) 1(2.1±3.6%) 0 0 7(14.9%±9.0%) 8(17.0%±9.5%) 7(14.9±9.0%)
Apache 27(54.0±13.3%) 3(6.0±6.3%) 3(6.0±6.3%) 1(2.0±3.7%) 7(14.0±9.3%) 5(10.0±8.0%) 4(8.0±7.3%)
OpenLDAP 23(46.9±11.5%) 7(14.3±8.0%) 11(22.4±9.6%) 0 6(12.2±7.5%) 1(2.0±3.2%) 1(2.0±3.2%)

Table 4: The distribution of different types of parameter mistakes for each applica-

tion.

InitiatorName: iqn:DEV_domain

(a) Illegal 1 – Format – Lexical from COMP-A

Description: for COMP-A's iscsi device, the name
of initiator (InitiatorName) can only allow
lowercase letters, while the user set the name with
some capital letters �DEV�.

This entry is missing

(b) Illegal 2 – Format – Syntax from OpenLDAP

include schema/ppolicy.schema
overlay ppolicy

Description: to use the password policy (i.e. ppolicy)
overlay, user needs to first include the related
schema in the configuration file. But the user did not
do that.

 AutoCommit = True

(i) Legal 1 from MySQL

Description: the parameter AutoCommit controls if
updates are written to disk automatically after every
insert. Either �True� or �False� is a legal value.
However, the user was experiencing an �insert�
intensive workload, so setting the value as �True� will
hurt performance dramatically. But when the user set
this parameter to be �True�, she was not aware of the
performance impact.

Impact: �too many connections� error generated.

The max allowed
persistent connections
specified in php is
larger than the max
connection specified
in mysql

Description: when using persistent connections, the
mysql.max_persistent in PHP should be no larger
than the max_connections in MySQL. User did not
conform to this constraint.

(g) Illegal 7 – Value – Value Inconsistency from MySQL

mysql's config
max_connections = 300
…...
php's config
mysql.max_persistent = 400

Impact: the performance of MySQL is very bad.

(h) Illegal 8 – Value – Value Inconsistency from Apache

Description: when setting name based virtual host,
the parameter VirtualHost should be set to the same
host as NameVirtualHost does. However, the user
set NameVirtualHost to be �*.80� while set
VirtualHost to be �*�.

Impact: a storage share cannot be recognized.

"*.80" does not
match with the "*"
in <VirtualHost ...>

Impact: Apache loads virtual host in a wrong order.

NameVirtualHost *:80

<VirtualHost *>
 …...
</VirtualHost>

Impact: the LDAP server fails to work.

extension = mysql.so
 …...
extension = recode.so

(c) Illegal 3 – Format – Syntax from Apache with PHP

Description: When using PHP in Apache, the
extension �mysql.so� depends on �recode.so�.
Therefore the order between them matters. The
user configured the order in a wrong way.
Impact: Apache cannot start due to seg fault.

"recode.so" must
be put before
"mysql.so"

(d) Illegal 4 – Value – Env Inconsistency from MySQL

datadir = /some/old/path

Description: the parameter �datadir� specifies the
directory that stores the data files. After the data files
were moved to other directory during migration, the
user did not update datadir to the new directory.

 The path does not contain data files any more

(e) Illegal 5 – Value – Env Inconsistency from COMP-A

192.168.x.x system-e0

Description: In the hosts file of COMP-A's system,
The mapping from ip address to interface name needs
to be specified. However, the user mapped the ip
�192.168.x.x� to a non-existed interface �system-e0�.

There is no interface
named "system-e0"

Impact: MySQL cannot start. Impact: The host cannot be accessed.

log_output="Table"

log=query.log

"log=" contradicts
with "log_ouput="

Impact: log is written to table rather than file.

(f) Illegal 6 – Value – Value Inconsistency from MySQL

Description: The parameter �log_output� controls
how log is stored (in file or database table). The user
wanted to store log in file query.log, but �log_output�
was incorrectly set to store log in database table.

Figure 2: Examples of different types of configuration parameter related mistakes.

(legal vs. illegal, lexical error, syntax error and inconsistency error)

4.2 Parameter Misconfigurations

Given the prevalence of parameter-based mistakes, we study the different types of such
mistakes (as shown in Table 4), the number of parameters needed for diagnosing or fixing
a parameter misconfiguration, and the problem domain of these mistakes.

Types of mistakes in parameter configuration. First, we look at parameter mistakes
that clearly violate some implicit or explicit configuration rules related to format, syn-
tax, or semantics. We call them illegal misconfigurations because they are unacceptable
to the examined system. Figures 2(a)∼(h) show eight such examples. These types of
misconfigurations may be detected automatically by checking against configuration rules.

In contrast, some other parameter mistakes are perfectly legal, but they are incorrect
simply because they do not deliver the functionality or performance desired by users,
like the example in Figure 2(i). These kinds of mistakes are difficult to detect unless
users’ expectation and intent can be specified separately and checked against configuration
settings. More user training may reduce these kinds of mistakes, as can simplified system
configuration logic, especially for things that can be auto-configured by the system.

Finding 3.1: 38.1%∼53.7% of parameter misconfigurations are caused by illegal parame-
ters that clearly violate some format or semantic rules defined by the system, and can be
potentially detected by checkers that inspect against these rules.

Finding 3.2: However, a large portion (46.3% ∼61.9%) of the parameter misconfigura-
tions have perfectly legal parameters but do not deliver the functionality intended by users.

These cases are more difficult to detect by automatic checkers and may require more user
training or better configuration design.

We subcategorize illegal parameter misconfigurations into illegal format, in which some
parameters do not obey format rules such as lower case, field separators, etc.; and illegal
value, in which the parameter format is correct but the value violates some constraints,
e.g., the value of a parameter should be smaller than some threshold. We find that illegal-
value misconfigurations are more common than illegal-format misconfigurations in most
systems, perhaps because format is easier to test against and thereby avoid.

Illegal format misconfigurations include both lexical and syntax mistakes. Similar to lexical
and syntax errors in program languages, a lexical mistake violates the grammar of a single
parameter, like the example shown in Figure 2(a); a syntax mistake violates structural or
order constraints of the format, like the example shown in Figure 2(b) and 2(c). As shown
in Table 4, up to 14.3% of the parameter misconfigurations are lexical mistakes, and up to
22.4% are syntax mistakes.

Illegal value misconfigurations mainly consist of two type of mistakes, “value inconsistency”
and “environment inconsistency”. Value inconsistency means that some parameter set-
tings violate some relationship constraints with some other parameters, while environment
inconsistency means that some parameter’s setting is inconsistent with the system environ-
ment (i.e., physical configuration). Figure 2(d) and 2(e) are two environment inconsistency
examples. As shown in Table 4, value inconsistency accounts for 12.2%∼29.7% of the
parameter misconfigurations, while environment inconsistency contributes 2.0%∼17.0%.
Both can be detected by some well-designed checkers as long as the constraints are known
and enforceable.

Figure 2(f), 2(g), and 2(h) present three value-inconsistency examples. In the first ex-
ample, the name of the log file is specified while the log output is chosen to be database
table. In the second example, two parameters from two different but related configuration
files contradict each other. In the third example, two parameters, NameVirtualHost and
VirtualHost, have unmatched values (“*.80” v.s. “*”).

Finding 4: A significant portion (12.2%∼29.7%) of parameter mistakes are due to value-
based inconsistency, calling for an inconsistency checker or a better configuration design
that does not require users to worry about such error-prone consistency constraints.

Number of erroneous parameters. As some previous work on detecting or diagnosing
misconfiguration focuses on only single configuration parameter mistakes, we look into
what percentages of parameter mistakes involve only a single parameter.

System
Number of Involved Parameters

One Multiple Unknown
COMP-A 117(47.6%±6.1%) 117(47.6%±6.1%) 12(4.8%±2.6%)
CentOS 30(71.4%±12.8%) 10(23.8%±12.1%) 2(4.8%±6.0%)
MySQL 35(74.5%±11.0%) 11(23.4%±10.7%) 1(2.1%±3.6%)
Apache 31(62.0%±13.0%) 16(32.0%±12.4%) 3(6.0%±6.3%)

OpenLDAP 18(36.7%±11.1%) 30(61.2%±11.2%) 1(2.0%±3.2%)

System
Number of Fixed Parameters

One Multiple Unknown
COMP-A 189(76.8%±5.1%) 44(17.9%±4.7%) 13(5.3%±2.7%)
CentOS 33(78.6%±11.7%) 7(16.7%±10.6%) 2(4.8%±6.1%)
MySQL 39(83.0%±9.5%) 7(14.9%±9.0%) 1(2.1%±3.6%)
Apache 33(66.0%±12.7%) 14(28.0%±12.0%) 3(6.0%±6.3%)

OpenLDAP 29(59.2%±11.3%) 17(34.7%±11.0%) 3(6.1%±5.5%)

Table 5: The number of parameters in the configuration parameter mistakes.

Table 5 shows the number of parameters involved in configuration as well as the number
of parameters that were changed to fix the misconfiguration. These numbers may not be
the same because a mistake may involve two parameters, but can be fixed by changing
only one parameter. Our analysis indicates that about 23.4%∼61.2% of the parameter
mistakes involve multiple parameters. Examples of cases where multiple parameters are
involved are cases with value inconsistencies (see above).

In comparison, about 14.9%∼34.7% of the examined misconfigurations require fixing mul-
tiple parameters. For example, the performance of a system could be influenced by several
parameters. To achieve the expected level of performance, all these parameters need to be
considered and set correctly.

Finding 5.1: The majority (36.7%∼74.5%) of parameter mistakes can be diagnosed by
considering only one parameter, and an even higher percentage(59.2%∼83.0%) of them
can be fixed by changing the value of only one parameter.

Finding 5.2: However, a significant portion (23.4%∼61.2%) of parameter mistakes in-
volve more than one parameter, and 14.9%∼34.7% require fixing more than one parameter.

Problem domains of parameter mistakes. We also study what problem domains each
parameter mistake falls under. We decide the domain based on the functionality of the
involved parameter. Four major problem domains – network, permission/privilege, perfor-
mance, and devices – are observed. Overall, 18.3% of examined parameter mistakes relate
to how the network is configured; 16.8% relate to permission/privilege; 7.1% relate to per-
formance adjustment. For the COMP-A systems and CentOs (the OSes), 8.5%∼26.2% of
examined parameter mistakes are about device configurations.

4.3 Software Incompatibility
Besides parameter-related mistakes, software incompatibility is another major cause of
misconfigurations (up to 18.3%, see Table 3). Software-incompatibility issues refer to
improper combinations of components or their versions. They could be caused by incom-
patible libraries, applications, or even operating system kernels.

One may think that system upgrades are more likely to cause software-incompatibility
issues, but we find that only 18.5% of the software-incompatibility issues are caused by
upgrades. One possible reason is that both developers and users already put significant
effort into the process of upgrades. For example, COMP-A provides a tool to help with
upgrades that creates an easy-to-understand report of all known compatibility issues, and
recommends ways to resolve them.

Some of the misconfiguration cases we analyze show that package-management systems
(e.g., RPM [34] and Debian dpkg [8]) can help address many software-incompatibility
issues. For example, in one of the studied cases, the user failed to install the mod proxy html
module because the existing libxml2 library was not compatible with this module.

Package-management systems may work well for systems with a standard set of packages.
For systems that require multiple applications from different vendors to work together,
it is more challenging. An alternative to package management systems is to use self-
contained packaging, i.e. integrating dependent components into one installation package
and minimizing the requirements on the target system. To further reduce dependencies,
one could deliver a system as virtual machine images (e.g., Amazon Machine Image) or
appliances (e.g., COMP-A’s storage systems). The latter may even eliminate hardware-
compatibility issues.

4.4 Component Misconfiguration

Subtype Number of Cases
Missing component 15(25.9%)

Placement 13(22.4%)
File format 3(5.2%)

Insufficient resource 15(25.7%)
Stale data 3(5.2%)

Others 9(15.5%)

Table 6: Subtypes of component misconfigurations.

Component misconfigurations are configuration errors that are neither parameter mistakes
nor compatibility problems. They are more related to how the system is organized and how
resources are supplied. A sizable portion (8.3%∼14.5%) of our examined misconfigurations
are of this category. Here, we further classify them into the following five subtypes based on
root causes: (1) Missing component : certain components (modules or libraries) are missing;
(2) Placement : certain files or components are not in the place expected by the system; (3)
File format: the format of a certain file is not acceptable to the system. For example, an
Apache web server on a Linux host cannot load a configuration file because it is in the MS-
DOS format with unrecognized new line characters. (4) Insufficient resource: the available
resources are not enough to support the system functionality (e.g., not enough disk space);
(5) Stale data: stale data in the system prevents the new configuration. Table 6 shows
the distribution of the subtypes of component misconfigurations. Missing components,
placement issues, and insufficient resources are equally prominent.

4.5 Mistake Location
System Inside FS OS-Module Network Other App Environment Others
COMP-A 132(42.7±3.0%) 23(7.4±1.6%) 3(1.0±0.6%) 53(17.2±2.3%) 82(26.5±2.7%) 5(1.6±0.8%) 11(3.6±1.1%)
CentOS 26(43.3±4.0%) 2(3.3±1.4%) 12(20.0±3.2%) 4(6.7±2.0%) 11(18.3±3.1%) 2(3.3±1.4%) 3(5.0±1.8%)
MySQL 27(49.1±3.2%) 10(18.2±2.5%) 6(10.9±2.0%) 1(1.8±0.9%) 6(10.9±2.0%) 4(7.3±1.7%) 1(1.8±0.9%)
Apache 47(78.3±3.1%) 3(5.0±1.7%) 3(5.0±1.7%) 3(5.0±1.7%) 3(5.0±1.7%) 0 1(1.7±1.0%)

OpenLDAP 39(62.9±3.4%) 2(3.2±1.3%) 1(1.6±0.9%) 0 17(27.4±3.3%) 1(1.6±0.9%) 2(3.2±1.3%)

Table 7: The location of errors. “Inside”: inside the target application. “FS”: in file

system. “OS-Module”: in some OS modules like SELinux. “Network”: in network

settings. “Other App”: in other applications. “Environment”: other environment like

DNS service.

Table 7 shows the distribution of configuration error locations. Naturally, most misconfig-
urations are contained in the target application itself. However, many misconfigurations
also span to places beyond the application. The administrators also need to consider other
parts of the system, including file-system permissions/capacities, operating-system mod-
ules, other applications running in the system, network configuration, etc. So looking at
only the application itself is not enough to diagnose and fix many configuration errors.

Finding 6: Although most misconfigurations are located within each examined applica-
tion, still a significant portion (21.7%∼57.3%) of cases involve configurations beyond the
application itself or span across multiple hosts.

5. SYSTEM REACTION TO MISCONFIGURATIONS

In this section, we examine system reactions to misconfigurations, focusing on whether the
system detects the misconfiguration and on the error messages issued by the system.

5.1 Do Systems Detect and Report Configuration Errors?
Proactive detection and informative reporting can help diagnose misconfigurations more
easily. Therefore, we wish to understand whether systems detect and report configuration
errors. We divide the examined cases into three categories based on how well the system

handles configuration errors (Table 8). Cases where the systems and associated tools de-
tect, report, recover from (or help the user correct) misconfigurations may not be reported
by users. Therefore, the results in this section may be especially skewed by the available
data. Nevertheless, there are interesting findings that arise from this analysis.

System
Pinpoint Indeterminate Quiet

Unknown
Reaction Reaction Failure

COMP-A 48(15.5±2.2%) 153(49.5±3.0%) 74(23.9±2.6%) 34(11.0±1.9%)
CentOS 7(11.7±2.4%) 33(55.0±3.7%) 16(26.7±3.3%) 4(6.7±1.9%)
MySQL 4(7.2±1.7%) 26(47.3±3.2%) 13(23.6±2.8%) 12(21.8±2.7%)
Apache 8(13.3±2.6%) 28(46.7±3.8%) 16(26.7±3.4%) 8(13.3±2.6%)

OpenLDAP 9(14.5±2.6%) 28(45.2%±3.7%) 14(22.6±3.1%) 11(17.7±2.8%)

(a)

System
Mysterious Symptoms

w/o Message
COMP-A 26(8.4±1.7%)
CentOS 4(6.7±1.9%)
MySQL 9(16.4±2.4%)
Apache 3(5.0±1.7%)

OpenLDAP 3(4.8±1.5%)

(b)

Table 8: How do systems react to misconfigurations? Table (a) presents the number

of cases in each category of system reaction. Table (b) presents the number of cases

that cause mysterious crashes, hangs, etc. but do not provide any messages.

We classify system reactions into pinpoint reaction, indeterminate reaction, and quiet fail-
ure.

A pinpoint reaction is one of the best system reactions to misconfigurations. The system
not only detects a configuration error but also pinpoints the exact root cause in the error
message (see a COMP-A example in Figure 3). As shown in Table 8 (a), more than
85% of the cases do not belong to this category, indicating that systems may not react
in a user-friendly way to misconfigurations. As previously discussed, the study includes
only reported cases. Therefore, some misconfigurations with good error messages may
have already been solved by users themselves and thus not reported. So in reality, the
percentage of pinpoint reaction to misconfiguration may be higher. However, considering
the total number of misconfigurations in the sources we selected is very large, there are still
a significant number of misconfigurations for which the examined systems do not pinpoint
the misconfigurations.

��������	
��

�����������������������������	�	�	�	
�������������
�����
�����������
���������

�����
��������������������
�

����	��

���
����	��

���
����	��

���
����	��

�������

[COMP-A – dir.size.max:warning]:
Directory /vol/vol1/xxx/data/ reached
the maxdirsize Limit. Reduce the number
of files or use the vol options command
to increase this limit

����	���
�����	���
�����	���
�����	���
��	�	�	�	
�����������������
�������������
��
�

�����
��������������������
���

Figure 3: A misconfiguration case where the error message pinpoints the root cause

and tells the user how to fix it.

An indeterminate reaction is a reaction that a system does provide some information about
the failure symptoms (i.e., manifestation of the misconfiguration), but does not pinpoint
the root cause or guide the user on how to fix the problem. 45.2%∼55.0% of our studied
cases belong to this category.

A quiet failure refers to cases where the system does not function properly, and it further
does not provide any information regarding the failure or the root cause. 22.6%∼26.7% of
the cases belong to this category. Diagnosing them is very difficult.

Finding 7: Only 7.2%∼15.5% of the studied misconfiguration problems provide explicit
messages that pinpoint the configuration error.

Quiet failures can be even worse when the misconfiguration causes the system to misbehave
in a mysterious way (crash, hang, etc.) just like software bugs. We find that such behavior
occurred in 5%∼8% of the cases (Table 8 (b)).

Why would misconfigurations cause a system to crash or hang unexpectedly? The reason
is intuitive: since configuration parameters can also be considered as a form of input, if
a system does not perform validity checking and prepare for illegal configurations, it may
lead to system misbehavior. We describe two such scenarios below.

Crash example: A web application used both mod python and mod wsgi modules in an
Apache httpd server. These two modules used two different versions of Python, which
caused segmentation fault errors when trying to access the web page.

Hang example: A server was configured to authenticate via LDAP with the hard bind
policy, which made it keep connecting to the LDAP server until it succeeded. However,
the LDAP server was not working, so the server hung when the user added new accounts.

Such misbehavior is very challenging to diagnose because users and support engineers may
suspect these unexpected failures to have been caused by a bug in the system instead of
a configuration issue (of course, one may argue that, in a way it can also be considered to
be a bug). If the system is built to perform more thorough configuration validity-checking
and avoid misconfiguration-caused misbehavior, both the cost of support and the diagnosis
time can be reduced.

Finding 8: Some misconfigurations have caused the systems to crash, hang, or have severe
performance degradation, making failure diagnosis a challenging task.

We further study if there is a correlation between the type of misconfiguration and the
difficulty for systems to react. We find that it is more difficult to have an appropriate re-
action for software-incompatibility issues. Only 9.3% of all the incompatibility issues have
pinpoint reaction, while the same ratio for parameter mistakes and component misconfig-
urations is 14.3% and 15.5% respectively. This result is reasonable since global knowledge
(e.g., the configuration of different applications) is often required to decide if there are
incompatibility issues.

5.2 System Reaction to Illegal Parameters
Cases with illegal configuration parameters (defined in Section 4.2) are usually easier to
be checked and pinpointed automatically. For example, Figure 4 is a patch from MySQL
that prints a warning message when the user sets illegal (inconsistent) parameters.

+if (opt_logname && !(log_output_options & LOG_FILE)
+ && !(log_output_options & LOG_NONE))
+ sql_print_warning("Although a path was specified
+ for the --log option, log tables are used. To enable
+ logging to files use the --log-output option.");

�������	
� ���
�����

Figure 4: A patch from MySQL that adds an explicit warning message when an

illegal configuration is detected. If parameter log output (value stored in variable

log_output_options) is set as neither “FILE” (i.e. output logs to files) nor “NONE”

(i.e. not output logs) but parameter log (value stored in variable opt_logname) is

specified with the name of a log file, a warning will be issued because these two

parameters contradict each other.

Unfortunately, systems do not detect and pinpoint a majority of these configuration mis-
takes, as shown in Table 9.

Finding 9: Among 220 cases with illegal parameters that could be easily detected and fixed,
only 4.3%∼26.9% of them provide explicit messages. Up to 31.3% of them do not provide
any message at all, unnecessarily complicating the diagnosis process.

System
Pinpoint Indeterminate Quiet

Unknown
Reaction Reaction Failure

COMP-A 25(18.9%) 57(43.2%) 27(20.5%) 23(17.4%)
CentOS 4(25.0%) 7(43.8%) 5(31.3%) 0
MySQL 1(4.3%) 13(56.5%) 3(13.0%) 6(26.1%)
Apache 5(21.7%) 9(39.1%) 4(17.4%) 5(21.7%)

OpenLDAP 7(26.9%) 11(42.3%) 4(15.4%) 4(15.4%)

Table 9: How do systems react to illegal parameters? The reaction category is the

same as in Table 8 (a).

5.3 Impact of Messages on Diagnosis Time
Do good error messages help engineers diagnose misconfiguration problems more effi-
ciently? To answer this question, we calculate the diagnosis time, in hours, from the
time when a misconfiguration problem was posted to the time when the correct answer
was provided.

System
Explicit Ambiguous

No Message
Message Message

COMP-A 1x 13x 14.5x
CentOS 1x 3x 5.5x
MySQL 1x 3.4x 1.2x
Apache 1x 10x 3x

OpenLDAP 1x 5.3x 2.5x

Table 10: The median of diagnosis time for cases with and without messages (time is

normalized for confidentiality reasons). Explicit message means that the error message

directly pinpoints the location of the misconfiguration. The median diagnosis time

of the cases with explicit messages is used as base. Ambiguous message means there

are messages, but they do not directly identify the misconfiguration. No message is

for cases where no messages are provided.

Table 10 shows that the misconfiguration cases with explicit messages are diagnosed much
faster. Otherwise, engineers have to spend much more time on diagnosis, where the median
of the diagnosis time is up to 14.5 times longer.

Finding 10: Messages that pinpoint configuration errors can shorten the diagnosis time
3 to 13 times as compared to the cases with ambiguous messages or 1.2 to 14.5 times as
compared to the cases with no messages.

To improve error reporting, two types of approaches can be adopted. A white-box ap-
proach [43] uses program analysis to identify the state that should be captured at each
logging statement in source code to minimize ambiguity in error messages. When source
code is not available, a black-box approach, such as Clarify [12], can be taken instead. Clar-
ify associates the program’s runtime profile with ambiguous error report, which enables
improved error reporting.

Interestingly, for some of the systems (Apache, MySQL, and OpenLDAP), engineers seem
to spend more time (2∼4 times longer) diagnosing cases with ambiguous messages than
cases with no messages at all. There are several potential reasons. First, incorrect or
irrelevant messages can sometimes mislead engineers, directing them down a wrong path.
Figure 5 shows such an example. Based on the message provided by the client, both the
support engineers and the customers thought the problem was on the client end, so they
made several attempts to set certificates, but the root cause turned out to be a problem
in the configuration on the server side. This indicates that the accuracy of messages
is critical to the diagnosis process. Providing misleading messages may be worse than
providing nothing at all.

Second, in some cases, symptoms and configuration-file content are already sufficient for
support engineers or experts to resolve the problem. For these cases, whether there are
error messages is less important. For example, many cases from MySQL related to per-

��������	
��

����������������������������
��

��	
�

����������� ����!�� ��������������������"

�		�	
����
���		�	
����
���		�	
����
���		�	
����
������

You have received an invalid certificate.
Please contact the administrator and get
a new certificate containing a unique
serial number.
(error code: sec_error_reused_issuer)

����
�
�������
�
�������
�
�������
�
��������#���$�

�������	������	����$�%���������

��������������&�	���������	
������'��"

Figure 5: A misconfiguration case where the error message misled the customer and

the support engineers.

formance degradation do not have error messages, but it was relatively easy for experts
to solve those problems by looking only at the configuration file. However, even for these
cases, if the system could give good-quality messages, users may be able to solve these
problems themselves.

Finding 11: Giving an irrelevant message may be worse than not giving message at all for
diagnosing misconfiguration. Some irrelevant messages could mislead users to chase down
the wrong path. In three of the five studied systems, statistical data shows that ambiguous
messages may lead to longer diagnosis time compared to not having any message.

We further performed a preliminary study on what kind of error messages are more useful
in reducing diagnosis time. Specifically, we read through the misconfiguration cases that
have explicit messages and are parameter mistakes (a total of 62 cases). Besides that all
these cases pinpoint the root cause of the failure (which is our definition of explicit), 69.4%
of them further mention the parameter name in the message; 6.5% of even further point
out the parameter’s location within the configuration file. However, we do not find strong
correlation between the diagnosis time and this extra information (e.g., parameter name)
in the explicit messages. A more comprehensive study on this topic is a good avenue for
future work.

6. CAUSES OF MISCONFIGURATIONS

6.1 When Do Misconfigurations Happen?
There are many ways to look at the reasons that cause a misconfiguration. Here, we
examine only a couple. First, when a misconfiguration happens, i.e. whether it happens
at the user’s first attempt to access certain functionality, or the system used to work
but does not work any more due to various changes. Based on this, we categorize the
misconfiguration cases into two categories (Table 11): (1) Used-to-work and (2) First-time
use.

System Used-to-Work First-Time Use Unknown
COMP-A 100(32.4±2.8%) 165(53.4±3.0%) 44(14.2±2.1%)
CentOS 10(16.7±3.0%) 40(66.6±3.8%) 10(16.7±3.0%)
MySQL 3(5.5±1.5%) 45(81.8±2.5%) 7(12.7±2.2%)
Apache 2(3.3±1.4%) 40(66.7±3.6%) 18(30.0±3.5%)

OpenLDAP 2(3.2±1.3%) 57(91.9±1.6%) 3(4.8±1.6%)

Table 11: The number of misconfigurations categorized by used-to-work and first-time

use.

One may think that most misconfigurations happen when users configure a system for
the first time. As our results show, it is indeed the case, especially for relatively simple

systems (MySQL, Apache, and OpenLDAP). The causes for the misconfigurations during
first-time use can be the inadequate knowledge of personnel, flawed design of the system,
or even inconsistent user manuals [33].

However, for more complex systems, such as COMP-A and CentOS, a significant portion
(16.7%∼32.4%) of the misconfigurations happen in the middle of the system’s lifetime.
There could be two major reasons. First, these systems have more frequent changes (up-
grades, reconfiguration, etc.) in their lifetime. Second, the configuration is more compli-
cated, so it takes a long time for users to master.

Finding 12: The majority of misconfigurations are related to first-time use of desired
functionality. For more complex systems, a significant percentage (16.7%∼32.4%) of mis-
configurations were introduced into systems that used to work.

6.2 Why Do Systems Stop Working?
To further examine the causes of used-to-work cases, we categorize the 100 cases of this
category from COMP-A based on their root causes (Figure 6).

Software
Upgrade

16%

Collateral Damage
29%

Incomplete
Maintenace

12%

Hardware
Change

18%

Exhaustion
Resource

14%

External
Environment

8%

Configuration Corrupted
 by Outage

Configuration Syntax
Changed

Configuration Modified

Incompatible
 Upgrade

5%

9%

2%

(The Subcategories of Software Upgrade)

3%

Figure 6: The cause distribution for the used-to-work misconfigurations at COMP-A

(we also subcategorize the cases caused by software upgrade).

Collateral damage refers to cases when users made configuration changes for some new
functionality but accidentally broke existing functionality. It accounts for 29.0% of the
used-to-work cases from COMP-A. To avoid such collateral damages, it might be useful if
users can be warned by the configuration management/change tool about the side-effects
of their changes.

Incomplete maintenance refers to cases when some regular maintenance tasks introduced
incomplete configuration changes. 12.0% of the used-to-work cases from COMP-A belong
to this category. For example, when an administrator does a routine periodic password
change to certain accounts but forgets to propagate it to all affected systems, some systems
would not be able to authenticate these accounts.

In addition, configuration could also be corrupted by outage (3.0%) or be modified acci-
dentally by some (2.0%) software upgrades (Figure 6). To sum up, 46% of the examined
used-to-work misconfiguration cases from COMP-A are caused by configuration-parameter
changes due to various reasons, including configuring other features, routine maintenance,
system outages, or software upgrades. To diagnose and fix these cases, it is useful for
systems to automatically keep track of configuration changes [24], and even better, help
users to pinpoint which change is the culprit [41].

Another major cause is hardware change (18.0%). When customers upgrade, replace or

����������	
���
�
������������

���	�����
��
����
��

����

����������	
����
�����������

���������	�����
��
����
��

����

������������

	
��

����
��
	
��

����
��
	
��

����
��
	
��

����
��
��������

��

�����
�
������
�
������
�
������
�
�

�
��
�������
��
�������
��
�������
��
��������������������
���	���������������������������������

�
���	���������� �����	�������������������������������

�������� ����!
������������������������"���������
�����������������!

���

����
��
���

����
��
���

����
��
���

����
��
��

�������������������
�
��������������������
�
��������������������
�
��������������������
�
�

Figure 7: A misconfiguration example where the syntax of configuration files has

changed after upgrade. A previously working NFS mounting configuration is no

longer valid, because the option actual became deprecated after upgrade.

reorganize hardware (e.g., moving a disk from one server to another), it can cause problems
if they forget to change related configuration parameters accordingly.

Resource exhaustion (14.0%) can also affect a previously working system. For example,
in one of the studied cases, a database system hung and did not work properly even after
rebooting because the data disks became full.

Finally, external environment changes could also be harmful to previously working sys-
tems. They account for 8.0% of used-to-work cases from COMP-A. For example, in one
of the studied cases, a system suffered from severe performance degradation because its
primary DNS server went offline accidentally. Such changes are error prone and problem-
atic, because different systems may be managed by different administrators who may not
communicate with each other in a timely manner about their changes.

Software upgrades, as one may expect, is another major cause of misconfigurations that
break a previously working system. It accounts for 16% of the “used-to-work” cases from
COMP-A. We further subcategorize it into three types. First, a new software release
may have changed the configuration file syntax or format requirements, making the old
configuration file invalid. Figure 7 gives such an example. Second, some automatic upgrade
processes may silently modify certain configuration parameters (e.g. set them to default
values) without users’ awareness. Third, software upgrades may cause incompatibilities
among components.

In order to prevent misconfigurations caused by software upgrades, systems should provide
automatic upgrade tools or at least detailed upgrade instructions [24, 7]. The upgrade
process should also take users’ existing configurations into consideration.

Finding 13: By looking into the 100 used-to-work cases (32.4% of the total) at COMP-A,
46% of them are attributed to configuration parameter changes due to routine maintenance,
configuring for new functionality, system outages, etc, and can benefit from tracking config-
uration changes. The remainder are caused by non-parameter related issues such as hard-
ware changes (18%), external environmental changes (8%), resource exhaustion (14%),
and software upgrades(14%).

7. IMPACT OF MISCONFIGURATIONS
We analyzed the severity of customer-reported issues from COMP-A (Section 3) and found
that a large percentage (31%) of high-impact issues were related to system configuration. In
this section, we analyze the severity of the specific misconfiguration cases used in our study,
particularly from the viewpoint of system availability and performance. We divide the
misconfiguration cases into three categories, as shown in Table 12: (1) the system becomes

fully unavailable; (2) the system becomes partially unavailable, i.e. it cannot deliver certain
desired features; and (3) the system suffers from severe performance degradation. We do
expect the results to be skewed towards the more severe, causing users to report them as
issues more than simpler cases.

System
Fully Partially Performance

Unavailable Unavailable Degradation
COMP-A 41 (13.3±2.1%) 247 (79.9±2.4%) 21 (6.8±1.5%)
CentOS 12 (20.0±3.2%) 47 (78.3±3.3%) 1 (1.7±1.0%)
MySQL 15 (27.3±2.9%) 29 (52.7±3.2%) 11 (20.0±2.6%)
Apache 15 (25.0±3.3%) 44 (73.3±3.4%) 1 (1.7±1.0%)

OpenLDAP 6 (9.7±2.2%) 52 (83.9±2.7%) 4 (6.4±1.8%)

Table 12: The impact distribution of the misconfiguration cases from all the studied

systems.

We find 9.7%∼27.3% of the misconfigurations cause the system to become fully unavailable.
This shows again that misconfigurations can be a severe threat to system availability.

Moreover, up to 20.0% of the misconfigurations cause severe performance degradation,
especially for systems such as database servers that are performance-sensitive and require
some nontrivial tuning based on users’ particular workloads, infrastructure, and data sizes.
For example, the official performance tuning guides for MySQL and Oracle have more than
400 pages, and mention tens, even hundreds of configuration parameters that are related to
performance. The percentage of misconfigurations causing performance issues here might
be an underestimate of performance problems in the field, since some trivial performance
issues introduced by misconfigurations may not be reported by the user.

Finding 14: Although most studied misconfiguration cases only lead to partial unavail-
ability of the system, 16.1%∼47.3% of them make the systems fully unavailable or cause
severe performance degradation.

The next question is whether different types of misconfigurations have different impact
characteristics. Therefore, we also examine the impact of each type of misconfiguration;
the results are shown in Table 13.

Misconfig Fully Partially Performance
Type Unavailable Unavailable Degradation

Parameters 59 (13.6%) 342 (78.8%) 33 (7.6%)
Compatibility 14 (25.9%) 38 (70.4%) 2 (3.7%)
Component 16 (27.6%) 39 (67.2%) 3 (5.2%)

Table 13: The impact on different types of misconfiguration cases. The data is

aggregated for all the examined systems. The percentage shows the ratio of a specific

type of misconfiguration (e.g., parameter mistake) that leads to a specific impact

level (e.g., full unavailability).

We find that, compared to configuration parameter mistakes, software compatibility and
component configuration errors are more likely to cause full unavailability of the system.
25.9% of the software compatibility issues and 27.6% of the component configuration errors
make systems fully unavailable, whereas this ratio is only 13.6% for parameter-related
misconfigurations.

The above results are not surprising because what components are used and whether they
are compatible can easily prevent systems from even being able to start. In contrast,
configuration-parameter mistakes, especially if the parameter is only for certain function-
ality, tend to have a much more localized impact.

In addition to having a more severe impact, compatibility and component configuration
mistakes can be more difficult to fix. They usually require greater expertise from users.

For example, in one of the misconfiguration cases of CentOS, the user could not mount
a newly created ReiserFS file system, because the kernel support for this ReiserFS file
system was missing. The user needed to install a set of libraries and kernel modules and
also modify configuration parameters in several places to get it to work.

8. RELATED WORK
Characteristic studies on operator errors: Several previous studies have examined
the contribution of operation errors or administrator mistakes [11, 22, 23, 27, 29, 30]. For
example, Jim Gray found that 42% of system failures are due to administration errors [11].
Patterson et al. [30] also observed a similar trend in telephone networks. Murphy et
al. [22] found that the percentage of failures due to system management is increasing over
time. Oppenheimer et al. [29] studied the failures of the Internet services and found that
configuration errors are the largest category of operator errors. Nagaraja et al. [23] also
had similar findings from a user study.

To the best of our knowledge, very few studies have analyzed misconfigurations in detail
and examined the subtypes, root causes, impacts and system reactions to misconfigura-
tions, especially in both commercial and open source systems with a large set of real-world
misconfigurations.

Detection of misconfigurations: A series of efforts [9, 21, 24, 38, 40] in recent years
have focused on detecting misconfigurations. The techniques used in PeerPressure [38] and
its predecessor Strider [40] have been discussed in the Introduction. Microsoft Baseline
Security Analyzer (MBSA)
[21] detects common security-related misconfigurations by checking configuration files against
predefined rules; security is one of the important impact categories we have not focused
on in our study. NetApp’s AutoSupport-based health management system [24] checks
the validity of configurations against “golden templates”, focusing on compatibility and
component issues (which are likelier to cause full availability according to our study).

Diagnosis of misconfigurations: Besides detection, another series of research ef-
forts [41, 35, 2, 3] focus on diagnosing problems after the errors happen. We have already
discussed AutoBash [35], ConfAid [3], and Chronus [41] in the Introduction. The appli-
cability of Chronus depends on how many misconfigurations belong to the “used-to-work”
category; according to our study, it is a significant percentage for more complex systems.
A follow-up work to AutoBash by Attariyan et al. [2] leverages system call information
to track the causality relation, which overcomes the limitations of the Hamming distance
comparison used in AutoBash to further enhance accuracy. Similar to [2], Yuan et al. [42]
use machine learning techniques to correlate system call information to problem causes in
order to diagnose configuration errors. Most of these works focused on parameter-related
misconfigurations.

Tolerance of misconfigurations: Some research work [35, 4] can help fix or tolerate
misconfigurations. In addition to AutoBash [35], Undo [4] uses checkpoints to allow ad-
ministrators to have a chance to roll back if they made some misconfigurations. Obviously,
it assumes that the system used to work fine, thus addressing a significant number of cases
for more complex systems.

Avoidance of misconfigurations: One approach to avoid misconfiguration is to de-
velop tools to configure the system automatically. SmartFrog [1] uses a declarative lan-
guage to describe software components and configuration parameters, and how they should
connect to each other. Configurations can then be automatically generated to greatly mit-
igate human errors. Similarly, Zheng et al. [44] leverage custom-specified templates to

automatically generate the correct configuration for a system. Kardo [18] adopts machine
learning techniques to automatically extract the solution operations out of the user’s UI
sequence and apply them automatically. The significant percentage of “illegal configura-
tion parameters” provides some supporting evidence and also shows the benefits of the
above approaches.

A more fundamental approach is to design better configuration logic/interface to avoid
misconfigurations. Maxion et al. [20] discovered that many misconfigurations for NTFS
permissions are due to the configuration interfaces not providing adequate information to
users. Therefore, they proposed a new design of the interface with subgoal support that
can effectively reduce the configuration errors on NTFS permissions by 94%.

Misconfiguration injection: As mentioned in the Introduction, a misconfiguration-
injection framework like ConfErr [17] is very useful for evaluating techniques for detecting,
diagnosing, and fixing misconfigurations. Our study can be beneficial for such framework
to construct a more accurate misconfiguration model.

Online validation: Another avenue of work [7, 23, 27, 28] focus on validating the
system for detecting operator mistakes. Nagaraja et al. [23] developed a validation frame-
work which can detect operator mistakes before deployment by comparing against the
comparator functions provided by users. A follow-up work by Oliveira et al. [27] validates
database system administrations. Another follow-up work by Oliveira et al. [28] addresses
the limitation of the previous validation system, which does not protect against human
errors directly performed on the production system. Mirage [7] also has a subsystem for
validating system upgrades.

Miscellaneous: Wang et al. [39] used reverse engineering to extract the security-related
configuration parameters automatically. Users can leverage the approach to slice the con-
figuration file and see if the security-related parameters are correct. Ramachandran et
al. [32] extracted the correlations between parameters, which can be used to detect some
of the inconsistent-parameter misconfigurations in our study. Rabkin et al. [31] found that
the configuration space after canonicalization is not very big after having analyzed seven
open source applications. Therefore a thorough test of different configuration parameters
might be possible for certain applications if input is generated in a smart way.

As we discussed in the Introduction, our characteristic study of real-world misconfigura-
tions would be useful in providing some guidelines to evaluate, improve, and extend some
of the above work on detecting, diagnosing, fixing, and injecting misconfigurations.

9. CONCLUSIONS
System configuration lies in the gray zone between the developers of a system and its
users. The responsibility for creating correct configurations lies with both parties; the
developer should create intuitive configuration logic, build logic that detects errors, and
convey configuration knowledge to users effectively; the user should imbibe the knowledge
and manage cross-application or cross-vendor configurations. This shared responsibility
is non-trivial to efficiently achieve. For example, there is no obviously “correct” way to
build configuration logic; also, unlike fixing a bug once, every user of the system has to be
educated on the right way to configure the system. Perhaps as a result, misconfigurations
have been one of the dominant causes of system issues and is likely to continue so.

We have performed a comprehensive characteristic study on 546 randomly-sampled real-
world misconfiguration cases from both a commercial system that is deployed to thousands
of customers, and four widely used open-source systems, namely CentOS, MySQL, Apache,
and OpenLDAP. Our study covers several dimensions of misconfigurations, including types,

causes, impact, and system reactions. We hope that our study helps extend and improve
tools that inject, detect, diagnose, or fix misconfigurations. Further, we hope that the
study provides system architects, developers, and testers insights into configuration-logic
design and testing, and also encourages support personnel to record field configuration
problems more rigorously so that vendors can learn from historical mistakes.

10. ACKNOWLEDGMENTS
We would like to express our great appreciation to our shepherd, Emmett Witchel, who was
very responsive and provided us with valuable suggestions to improve our work. We also
thank the anonymous reviewers for their insightful comments and suggestions. Moreover,
we thank Kiran Srinivasan, Puneet Anand, Scott Leaver, Karl Danz, and James Ayscue for
their feedback and insights, and thank the support engineers and developers of COMP-A
storage systems and the open-source systems used in the study for their help. Finally, we
greatly appreciate Soyeon Park, Weiwei Xiong, Jiaqi Zhang, Xiaoming Tang, Peng Huang,
Yang Liu, Michael Lee, Ding Yuan, Zhuoer Wang, and Alexander Rasmussen for helping
us proofread our work. This research is supported by NSF CNS-0720743 grant, NSF CCF-
0325603 grant, NSF CNS-0615372 grant, NSF CNS- 0347854 (career award), NSF CSR
Small 1017784 grant, and a NetApp Faculty Fellowship.

11. REFERENCES
[1] P. Anderson, P. Goldsack, and J. Paterson. SmartFrog meets LCFG Autonomous

Reconfiguration with Central Policy Control. In LISA, August 2003.

[2] M. Attariyan and J. Flinn. Using causality to diagnose configuration bugs. In
USENIX, June 2008.

[3] M. Attariyan and J. Flinn. Automating configuration troubleshooting with dynamic
information flow analysis. In OSDI, October 2010.

[4] A. B. Brown and D. A. Patterson. Undo for Operators: Building an Undoable
E-mail Store. In USENIX, June 2003.

[5] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of
operating systems errors. In SOSP’01.

[6] CircleID. Misconfiguration brings down entire .se domain in sweden. www.circleid.
com/posts/misconfiguration_brings_down_entire_se_domain_in_sweden/.

[7] O. Crameri, N. Knezević, D. Kostić, R. Bianchini, and W. Zwaenepoel. Staged
Deployment in Mirage, an Integrated Software Upgrade Testing and Distribution
System. In SOSP’07, October 2007.

[8] Debian. The Debian GNU/Linux FAQ, Chapter 8: The Debian Package
Management Tools. http://www.debian.org/doc/FAQ/ch-pkgtools.en.html.

[9] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults with static
analysis. In NSDI, May 2005.

[10] D. Freedman, R. Pisani, and R. Purves. Statistics, 3rd Edition. W. W. Norton &
Company., 1997.

[11] J. Gray. Why do computers stop and what can be done about it? In Symp. on
Reliability in Distributed Software and Database Systems, 1986.

[12] J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan, D. E. Porter, D. L.
Chen, and E. Witchel. Improved Error Reporting for Software that Uses Black-Box
Components. In PLDI, 2007.

[13] Hewlett-Packard. HP Storage Essentials SRM Software Suite.
http://h18000.www1.hp.com/products/quickspecs/12191_na/12191_na.pdf.

[14] IBM Corp. IBM Tivoli Software. http://www-01.ibm.com/software/tivoli/.

[15] R. Johnson. More details on today’s outage. http://www.facebook.com/notes/
facebook-engineering/more-details-on-todays-outage/431441338919.

[16] A. Kappor. Web-to-host: Reducing total cost of ownership. In Technical Report

200503, The Tolly Group, May 2000.

[17] L. Keller, P. Upadhyaya, and G. Candea. ConfErr: A Tool for Assessing Resilience
to Human Configuration Errors. In DSN, June 2008.

[18] N. Kushman and D. Katabi. Enabling Configuration-Independent Automation by
Non-Expert Users. In OSDI, October 2010.

[19] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes – a comprehensive
study on real world concurrency bug characteristics. In ASPLOS, March 2008.

[20] R. A. Maxion and R. W. Reeder. Improving user-interface dependability through
mitigation of human error. International Journal of Human-Computer Studies, 63,
July 2005.

[21] Microsoft Corp. Microsoft Baseline Security Analyzer. 2008.
http://www.microsoft.com/technet/security/tools/MBSAHome.mspx.

[22] B. Murphy and T. Gent. Measuring system and software reliability using an
automated data collection process. In Quality and Reliability Engineering
International, 11(5),, 1995.

[23] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen.
Understanding and Dealing with Operator Mistakes in Internet Services. In
OSDI’04, October 2004.

[24] NetApp, Inc. Proactive Health Management with AutoSupport.
http://media.netapp.com/documents/wp-7027.pdf.

[25] NetApp, Inc. Protection Manager.
http://www.netapp.com/us/products/management-software/protection.html.

[26] NetApp, Inc. Provisioning Manager.
http://www.netapp.com/us/products/management-software/provisioning.html.

[27] F. Oliveira, K. Nagaraja, R. Bachwani, R. Bianchini, R. P. Martin, and T. D.
Nguyen. Understanding and Validating Database System Administration. In
USENIX’06, 2006.

[28] F. Oliveira, A. Tjang, R. Bianchini, R. P. Martin, and T. D. Nguyen. Barricade:
Defending Systems Against Operator Mistakes. In EuroSys’10, April 2010.

[29] D. Oppenheimer, A. Ganapathi, and D. A. Patterson. Why do Internet services fail,
and what can be done about it? In Proceedings of the 4th USENIX Symposium on
Internet Technologies and Systems (USITS), March 2003.

[30] D. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. Enriquez,
A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft. Recovery Oriented Computing (ROC): Motivation,
Definition, Techniques, and Case Studies. In Technical Report UCB//CSD-02-1175,
University of California, Berkeley, March 2002.

[31] A. Rabkin and R. Katz. Static Extraction of Program Configuration Options. In
ICSE, May 2011.

[32] V. Ramachandran, M. Gupta, M. Sethi, and S. R. Chowdhury. Determining
Configuration Parameter Dependencies via Analysis of Configuration Data from
Multi-tiered Enterprise Applications. In ICAC, June 2009.

[33] E. Reisner, C. Song, K.-K. Ma, J. S. Foster, and A. Porter. Using symbolic
evaluation to understand behavior in configurable software systems. In ICSE, May
2010.

[34] RPM. Rpm package manager (rpm). http://rpm.org/.

[35] Y.-Y. Su, M. Attariyan, and J. Flinn. AutoBash: improving configuration
management with operating system causality analysis. In SOSP, October 2007.

[36] M. Sullivan and R. Chillarege. Software defects and their impact on system
availability: A study of field failures in operating systems. In FTCS, 1991.

[37] M. Sullivan and R. Chillarege. A comparison of software defects in database
management systems and operating systems. In International Symposium on
Fault-Tolerant Computing, 1992.

[38] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang. Automatic
Misconfiguration Troubleshooting with PeerPressure. In OSDI’04, October 2004.

[39] R. Wang, X. Wang, K. Zhang, and Z. li. Towards Automatic Reverse Engineering of
Software Security Configurations. In CCS, October 2008.

[40] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan, and
Z. Zhang. STRIDER: A Black-box, State-based Approach to Change and
Configuration Management and Support. In LISA’03, October 2003.

[41] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration Debugging as Search:
Finding the Needle in the Haystack. In OSDI, October 2004.

[42] C. Yuan, N. Lao, J.-R. Wen, J. Li, Z. Zhang, Y.-M. Wang, and W.-Y. Ma.
Automated Known Problem Diagnosis with Event Traces. In EuroSys, April 2006.

[43] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Improving Software
Diagnosability via Log Enhancement. In ASPLOS, March 2011.

[44] W. Zheng, R. Bianchini, and T. D. Nguyen. Automatic Configuration of Internet
Services. In EuroSys, March 2007.

Notice: NetApp, the NetApp logo, and Go further, faster are trademarks or registered
trademarks of NetApp, Inc. in the United States and/or other countries.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

