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B)  1

C)  it depends

D)  I can't think, you made me         
      hungry with the pizza thing
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That's a process race



  

Process Races

● Process races occur when multiple processes 
access shared resources (such as files)        
without proper synchronization

● Examples:
● parallel make (make -j) failure

● ps aux | grep pizza



  

ps aux | grep xxx



  

Process Races Are Numerous

● Searched for “race” in the distro bug trackers 
(Ubuntu, Redhat/Fedora, Gentoo, Debian, CentOS )

● 9000+ results
● Sampled 500+ of them
● 109 unique bugs due to process races



  

Process Races Are Dangerous

Source: samples from Ubuntu, Redhat, Fedora, Gentoo, 
Debian, CentOS bug trackers



  

Process Races Are Hard To Detect 

Thread Races
27%

Process Races
73%

TOCTTOU Races
23%

Thread races may be underrepresented in linux distributions 
bug trackers



  

General process races

cannot be detected

using existing race detectors



  

Not so surprising

● Different programs, written in different 
languages

● Access many different resources
● Syscalls semantics are a bit obscure
● Depends on user configuration, specific 

environment



  

Racepro

The first generic process race

detection framework

“It's Amazing”
              Nicolas Viennot



  

Racepro

● Detect generic process races
● Check deployed systems in-vivo
● Low overhead
● Transparent to applications
● Detected previously known and unknown bugs
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Recorder

● Builds on Scribe (Sigmetrics 2010)
● Lightweight kernel-level recorder
● Rendez-vous points:

● Partial ordering of system calls

● Sync points:
● Convert asynchronous events to synchronous 

events to track signals and shared memory



  

Benefits

● Tracks kernel object accesses
● Allows deterministic replay
● Enables transition to live execution
● Runs on commodity hardware, SMP friendly
● Low overhead
● Transparent to applications



  

ps aux | grep pizza

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)



  

Log File Content
[2] read() = 11
[2]   read files_struct, id = 41, serial = 157
[2]   write file, id = 152, serial = 0
[2]   read pid, id = 40, serial = 17

[3] execve() = 0
[3]   write pid, id = 40, serial = 8
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 11, serial = 0
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     read inode, id = 13, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     write futex, id = 51, serial = 0



  

Log File Content
[2] read() = 11
[2]   read files_struct, id = 41, serial = 157
[2]   write file, id = 152, serial = 0
[2]   read pid, id = 40, serial = 17

[3] execve() = 0
[3]   write pid, id = 40, serial = 8
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 11, serial = 0
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     read inode, id = 13, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     write futex, id = 51, serial = 0



  

Log File Content
[2] read() = 11
[2]   read files_struct, id = 41, serial = 157
[2]   write file, id = 152, serial = 0
[2]   read pid, id = 40, serial = 17

[3] execve() = 0
[3]   write pid, id = 40, serial = 8
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 11, serial = 0
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     read inode, id = 13, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     write futex, id = 51, serial = 0



  

Log File Content
[2] read() = 11
[2]   read files_struct, id = 41, serial = 157
[2]   write file, id = 152, serial = 0
[2]   read pid, id = 40, serial = 17

[3] execve() = 0
[3]   write pid, id = 40, serial = 8
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 11, serial = 0
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     read inode, id = 13, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     write futex, id = 51, serial = 0



  

Log File Content
[2] read() = 11
[2]   read files_struct, id = 41, serial = 157
[2]   write file, id = 152, serial = 0
[2]   read pid, id = 40, serial = 17

[3] execve() = 0
[3]   write pid, id = 40, serial = 8
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 11, serial = 0
[3]     read inode, id = 1, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     read inode, id = 13, serial = 0
[3]     read inode, id = 6, serial = 0
[3]     write futex, id = 51, serial = 0



  

Step 2: Detection

Log file Races



  

Model

System calls are translated to
load/store micro-operations



  

Micro-operations
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Micro-operations
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Micro-operations
 
[2]   load 41
[2]   store 152
[3]   store 40
[3]   load 1
[3]   load 11
[3]   load 1
[3]   load 6
[3]   load 13
[3]   load 6
[3]   store 51
[2]   load 40
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Micro-operations
 
[2]   load 41
[2]   store 152
[3]   store 40
[3]   load 1
[3]   load 11
[3]   load 1
[3]   load 6
[3]   load 13
[3]   load 6
[3]   store 51
[2]   load 40

You can now run your favorite thread race algorithm !

Racy Instructions !



  

Other kinds of races...



  

Wait-Wakeups Race

● A waiting syscall can be woken up by many 
matching wakeup syscalls

● Only Racepro detect such races

● Example:
● read() on pipe can be woken by any writers
● waitpid() can be woken by any children



  

Wait-Wakeups Race Example
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exit

read(/proc/3/cmdline)

execve(grep)



  

Wait-Wakeups Race Example

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)



  

Step 3: Validation

Races Harmful Races



  

Validation Overview

● Create execution branch: Modified version of 
the original execution that makes the race 
occur by changing the order of system calls

● Problem: change in the middle of the recording 
can make the replay diverge

● Solution: truncate the log file after the 
modification and transition to live execution



  

Validation Steps

● Deterministic replay until race occurs, including 
replaying internal kernel state

● Replay the reordered racy system calls
● Transition to live execution
● Run built-in or custom checkers



  

Validation
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Is this race harmful or not ?
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Validation

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Live execution
Watched with checkers



  

Results

● Detected previously known and unkown bugs
● Heavy inter-process interaction
● Validation is crucial
● Recording overhead is small



  

Bugs detected

Bug Description
debian-294579 adduser: /etc/passwd corruption

debian-438076 mv: unlink target before calling rename

debian-399930 logrotate: create a file that may be observed by 
deamons without write permissions

redhat-54127 licq: ps | grep race causing the wrong interface to be 
loaded

launchpad-
596064

upstart: does not wait until smdb creates a directory 
before spawning nmdb 

launchpad-10809 bash: history file corruption

new-1 tcsh: history file corruption

new-2 updatedb: race with locate when saving the database

new-3 updatedb: concurrent updatedb may corrupt the 
database

new-4 abr2gbr: incorrect dependencies in the Makefile
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Detection

Bug Processes Syscalls Resources

debian-294579 19 5275 658

debian-438076 21 1688 213

debian-399930 10 1536 279

redhat-54127 14 1298 229

launchpad-596064 34 5564 722

launchpad-10809 13 1890 205

new-1 12 2569 201

new-2 47 2621 467

new-3 30 4361 2981

new-4 19 4672 716



  

Validation
Bug Detected Harmful Checker

debian-294579 4231 42 Custom

debian-438076 50 4 Default

debian-399930 17 4 Default

redhat-54127 35 4 Custom

launchpad-596064 272 2 Default

launchpad-10809 143 10 Custom

new-1 137 14 Custom

new-2 82 42 Default

new-3 17 4 Default

new-4 8 1 Default



  

Recording



  

Conclusion

● Racepro: the first generic process race detector
● Record applications in production systems
● Model system calls with load/store micro-ops
● Validate by checking uncontrolled execution

● Detected previously known and unknown races
● Low recording overhead



  

For More Information

systems.cs.columbia.edu

github.com/nviennot/linux-2.6-scribe



  

Resources

Object Description

inode File, Directory, Socket, Pipe, TTY, Device

file File handle of an opened file

file-table Process file table

mmap Process memory map

cred Process credentials

global System-wide properties (hostname, ...)

pid Process ID

ppid Parent process ID



  

Checkers

● Crash detection
● Application Hanging
● Check for error messages in log files
● Return value of application
● Linearized run (EuroSys11)
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