

Pervasive Detection of Thread Process Races
In Deployed Systems

Columbia University
Oren Laadan

Nicolas Viennot
Chia-Che Tsai

Chris Blinn
Junfeng Yang

Jason Nieh

ps aux | grep pizza

ps aux | grep pizza
outputs how many lines:

A) 0

B) 1

C) it depends

D) I can't think, you made me
 hungry with the pizza thing

ps aux | grep pizza
outputs how many lines:

A) 0

B) 1

C) it depends

D) I can't think, you made me
 hungry with the pizza thing

ps aux | grep pizza

shell

$

ps aux | grep pizza

shell

$ ps aux | grep pizza

ps aux | grep pizza

shell

ps

fork

$ ps aux | grep pizza

ps aux | grep pizza

shell

ps

grep

fork fork

$ ps aux | grep pizza

ps aux | grep pizza

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

$ ps aux | grep pizza

ps aux | grep pizza

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

$ ps aux | grep pizza
nviennot 3 ... S+ 13:30 0:00 grep pizza
$

ps aux | grep pizza

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

$ ps aux | grep pizza
$

That's a process race

Process Races

● Process races occur when multiple processes
access shared resources (such as files)
without proper synchronization

● Examples:
● parallel make (make -j) failure

● ps aux | grep pizza

ps aux | grep xxx

Process Races Are Numerous

● Searched for “race” in the distro bug trackers
(Ubuntu, Redhat/Fedora, Gentoo, Debian, CentOS)

● 9000+ results
● Sampled 500+ of them
● 109 unique bugs due to process races

Process Races Are Dangerous

Source: samples from Ubuntu, Redhat, Fedora, Gentoo,
Debian, CentOS bug trackers

Process Races Are Hard To Detect

Thread Races
27%

Process Races
73%

TOCTTOU Races
23%

Thread races may be underrepresented in linux distributions
bug trackers

General process races

cannot be detected

using existing race detectors

Not so surprising

● Different programs, written in different
languages

● Access many different resources
● Syscalls semantics are a bit obscure
● Depends on user configuration, specific

environment

Racepro

The first generic process race

detection framework

“It's Amazing”
 Nicolas Viennot

Racepro

● Detect generic process races
● Check deployed systems in-vivo
● Low overhead
● Transparent to applications
● Detected previously known and unknown bugs

Racepro Workflow

Racepro Workflow

Racepro Workflow

Racepro Workflow

Recorder

● Builds on Scribe (Sigmetrics 2010)
● Lightweight kernel-level recorder
● Rendez-vous points:

● Partial ordering of system calls

● Sync points:
● Convert asynchronous events to synchronous

events to track signals and shared memory

Benefits

● Tracks kernel object accesses
● Allows deterministic replay
● Enables transition to live execution
● Runs on commodity hardware, SMP friendly
● Low overhead
● Transparent to applications

ps aux | grep pizza

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Log File Content
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Log File Content
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Log File Content
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Log File Content
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Log File Content
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Step 2: Detection

Log file Races

Model

System calls are translated to
load/store micro-operations

Micro-operations
[2] read() = 11
[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] execve() = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Micro-operations

[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[2] read pid, id = 40, serial = 17

[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0

Micro-operations

[2] read files_struct, id = 41, serial = 157
[2] write file, id = 152, serial = 0
[3] write pid, id = 40, serial = 8
[3] read inode, id = 1, serial = 0
[3] read inode, id = 11, serial = 0
[3] read inode, id = 1, serial = 0
[3] read inode, id = 6, serial = 0
[3] read inode, id = 13, serial = 0
[3] read inode, id = 6, serial = 0
[3] write futex, id = 51, serial = 0
[2] read pid, id = 40, serial = 17

Micro-operations

[2] load 41
[2] store 152
[3] store 40
[3] load 1
[3] load 11
[3] load 1
[3] load 6
[3] load 13
[3] load 6
[3] store 51
[2] load 40

Micro-operations

[2] load 41
[2] store 152
[3] store 40
[3] load 1
[3] load 11
[3] load 1
[3] load 6
[3] load 13
[3] load 6
[3] store 51
[2] load 40

You can now run your favorite thread race algorithm !

Micro-operations

[2] load 41
[2] store 152
[3] store 40
[3] load 1
[3] load 11
[3] load 1
[3] load 6
[3] load 13
[3] load 6
[3] store 51
[2] load 40

You can now run your favorite thread race algorithm !

Racy Instructions !

Other kinds of races...

Wait-Wakeups Race

● A waiting syscall can be woken up by many
matching wakeup syscalls

● Only Racepro detect such races

● Example:
● read() on pipe can be woken by any writers
● waitpid() can be woken by any children

Wait-Wakeups Race Example

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)

Wait-Wakeups Race Example

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)

Step 3: Validation

Races Harmful Races

Validation Overview

● Create execution branch: Modified version of
the original execution that makes the race
occur by changing the order of system calls

● Problem: change in the middle of the recording
can make the replay diverge

● Solution: truncate the log file after the
modification and transition to live execution

Validation Steps

● Deterministic replay until race occurs, including
replaying internal kernel state

● Replay the reordered racy system calls
● Transition to live execution
● Run built-in or custom checkers

Validation

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)

Is this race harmful or not ?

Validation

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)

Validation

shell

ps

grep

fork fork wait waitwait

exit

exit

read(/proc/3/cmdline)

execve(grep)

Validation

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Validation

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Deterministic Replay

Validation

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Transition to live execution

Validation

shell

ps

grep

fork fork

read(/proc/3/cmdline)

execve(grep)

Live execution
Watched with checkers

Results

● Detected previously known and unkown bugs
● Heavy inter-process interaction
● Validation is crucial
● Recording overhead is small

Bugs detected

Bug Description
debian-294579 adduser: /etc/passwd corruption

debian-438076 mv: unlink target before calling rename

debian-399930 logrotate: create a file that may be observed by
deamons without write permissions

redhat-54127 licq: ps | grep race causing the wrong interface to be
loaded

launchpad-
596064

upstart: does not wait until smdb creates a directory
before spawning nmdb

launchpad-10809 bash: history file corruption

new-1 tcsh: history file corruption

new-2 updatedb: race with locate when saving the database

new-3 updatedb: concurrent updatedb may corrupt the
database

new-4 abr2gbr: incorrect dependencies in the Makefile

Bugs detected

Bug Description
debian-294579 adduser: /etc/passwd corruption

debian-438076 mv: unlink target before calling rename

debian-399930 logrotate: create a file that may be observed by
deamons without write permissions

redhat-54127 licq: ps | grep race causing the wrong interface to be
loaded

launchpad-
596064

upstart: does not wait until smdb creates a directory
before spawning nmdb

launchpad-10809 bash: history file corruption

new-1 tcsh: history file corruption

new-2 updatedb: race with locate when saving the database

new-3 updatedb: concurrent updatedb may corrupt the
database

new-4 abr2gbr: incorrect dependencies in the Makefile

Detection

Bug Processes Syscalls Resources

debian-294579 19 5275 658

debian-438076 21 1688 213

debian-399930 10 1536 279

redhat-54127 14 1298 229

launchpad-596064 34 5564 722

launchpad-10809 13 1890 205

new-1 12 2569 201

new-2 47 2621 467

new-3 30 4361 2981

new-4 19 4672 716

Validation
Bug Detected Harmful Checker

debian-294579 4231 42 Custom

debian-438076 50 4 Default

debian-399930 17 4 Default

redhat-54127 35 4 Custom

launchpad-596064 272 2 Default

launchpad-10809 143 10 Custom

new-1 137 14 Custom

new-2 82 42 Default

new-3 17 4 Default

new-4 8 1 Default

Recording

Conclusion

● Racepro: the first generic process race detector
● Record applications in production systems
● Model system calls with load/store micro-ops
● Validate by checking uncontrolled execution

● Detected previously known and unknown races
● Low recording overhead

For More Information

systems.cs.columbia.edu

github.com/nviennot/linux-2.6-scribe

Resources

Object Description

inode File, Directory, Socket, Pipe, TTY, Device

file File handle of an opened file

file-table Process file table

mmap Process memory map

cred Process credentials

global System-wide properties (hostname, ...)

pid Process ID

ppid Parent process ID

Checkers

● Crash detection
● Application Hanging
● Check for error messages in log files
● Return value of application
● Linearized run (EuroSys11)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65

