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ABSTRACT 
Recent proposals using low-power processors and Flash-
based storage can dramatically improve the energy-efficiency 
of compute and storage subsystems in data-centric 
computing. However, in a balanced system design, these 
changes call for matching improvement in the network 
subsystem as well. Conventional Ethernet-based networks are 
a potential energy-efficiency bottleneck due to the limited 
performance of gigabit Ethernet and the high power overhead 
of 10-gigbit Ethernet. In this paper, we evaluate the benefits 
of using an alternative, high-bandwidth, low-power, 
interconnect—PCIe—for power-efficient networking. Our 
experiments using PCIe’s Non-Transparent Bridging for data 
transfer demonstrate significant performance gains at lower 
power, leading to 60-124% better energy efficiency. Early 
experiences with PCIe clustering also point to several 
challenges of PCIe-based networks and new opportunities for 
low-latency power-efficient datacenter networking.  

1. INTRODUCTION  
Achieving power efficiency is a key challenge in data-centric 
computing, as the costs of power and cooling become a major 
component of the total costs of ownership. Critically, the I/O 
intensity of these workloads (which leads to new and often 
reduced compute-to-IO ratios) and the data communication 
needed in large-scale systems necessitate a balanced system 
design approach to improve energy efficiency. 

Recent proposals [1][2][3] combine low-power, embedded-
class processors with Flash-based storage, designing 
“microservers” that achieve 2-100 times better energy 
efficiency by rebalancing compute versus I/O. These 
proposals exploit processors optimized for performance/watt 
and energy proportionality [4], reducing the peak and idle 
power of the compute subsystem. In parallel, they improve 
the storage system’s energy efficiency by adopting hardware 
and software optimizations for solid state storage.  

The rapid changes in compute and storage, however, expose 
the network as a potential performance and energy-efficiency 
bottleneck. However, prior microserver proposals focus 
primarily on Ethernet and socket programming as the default 
hardware/software combination for the network. This 
decision is partly because there are few alternatives beside 
Ethernet, but also acknowledges the business advantages of 
traditional networks. Ethernet has the cost benefits of 

commodity hardware, and socket programming is widely 
used in data-centric software. For similar reasons, recent 
work in improving the scalability and energy-proportionality 
of data center networks [5][6][7] also assume Ethernet.  

Ethernet, however, has high performance and power 
overheads due to the need to drive longer-distance cable and 
its high packet processing requirements. On compute/storage-
optimized platforms in particular, the performance and power 
overheads of gigabit Ethernet (1GbE) can become a limiting 
factor. 10-gigabit Ethernet (10GbE) may alleviate the 
performance issue but consumes more power.  

In this paper, we examine the opportunities and challenges of 
using an alternative, non-Ethernet interconnect that has 
higher performance and lower power. To match the cost 
benefits of Ethernet, we choose a commodity interconnect—
PCIe—and demonstrate its performance and power benefits 
in small clusters. Our goals are to understand the benefits of 
PCIe as a “local” network and the challenges in making it 
part of “global” datacenter-scale networks.  

We make two main contributions. (1) Using workloads with 
varied compute, storage and network requirements, we 
examine the performance and power impacts of different 
networks on the overall system. Our experiments identify 
today’s Ethernet as an important performance and energy-
efficiency bottleneck, especially for data-centric systems with 
power-optimized compute and storage subsystems. (2) We 
demonstrate the performance and power benefits of PCIe-
based networks with a prototype system. Performance 
measurements show that the PCIe-based network provides 
more than 80% speedup over 1GbE, at even lower power. 
With non-intrusive modifications to the application software, 
Hadoop/sort runs 20% faster.  Overall, the PCIe network 
enables 60-124% better energy efficiency.  

2. PRIOR AND PROTOTYPED DESIGNS 
To illustrate the energy efficiency improvement trends, Table 
1 lists examples of today’s compute, storage and network 
components, and their characteristics in power and 
performance (for example, in raw bandwidths).  
Typical clusters use server processors such as Xeon X5670 
and multiple rotational hard drives, both of which are power 
hungry. Such combinations are a mismatch for data-centric 
workloads which often require higher I/O performance but 
less compute power. This observation has motivated recent 
proposals (e.g., [1][2][3]) to strike a new compute-to-I/O 
balance, using embedded-class processors with fast, efficient, 
Flash-based storage as an energy-efficient data-centric 
computing platform.  

For example, the bottom half of Table 1 shows a Gordon 
node [3]. This design packages an Atom processor with 
DDR2 memory, optimized Flash storage, chipset, and gigabit 
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Figure 1: Testbed cluster (3 nodes with PCIe) 

Ethernet in an add-on card. Despite their efficiency 
improvements, such proposed systems typically use gigabit 
Ethernet and do not investigate other network options. 

To explore the balance between compute, storage and 
network subsystems, we build a small testbed cluster to 
measure the performance and power impact of different 
subsystems (Figure 1) and study the following options: 

- Compute: Our systems use the Xeon X5670 processor 
running at 1.6GHz in low-power mode. The processor uses 
9 watts per core peak power, and is configured to use 1, 2, 
or 4 cores.  

- Memory and Storage: All the systems use 4GB DDR3 
memory (6 watt). For storage, we study two 
configurations:  (i) a Fusion-IO ioDrive SLC 160GB 
(FIO) with power modeled after [3] and  (ii) a RAM-based 
file system (RAMFS) to model future NVM-based storage. 

- Network: We study two main networks: (i) a baseline 
gigabit Ethernet (1GbE) with NIC and switch power 
values as in Table 1 and (ii) a PCIe network using the PLX 
PEX 8696 switch with 2GB/s x4 lanes (PCIe) [8].  

The devices above have small form factors and low power 
requirements. Although currently hosted in workstations, 

they can be placed on small PCBs connected to a PCIe-
switched midplane. Such compact designs allow the use of 
PCIe in a medium-size cluster (e.g., 48-node). 

3. PCIE-BASED NETWORK 
PCI-express (PCIe) is a commodity IO interconnect widely 
used in motherboards and backplanes. PCIe as a network 
fabric also appears in emerging system proposals (e.g., 
SeaMicro [9]). With appropriate provisioning for IO 
consolidation, PCIe can be cost-competitive with Ethernet. 
For example, Leigh et al. [10] show the cost/bandwidth 
advantage of PCIe over Ethernet. Each link between PCIe 
devices can have 1 to 32 lanes with increasing bandwidths. In 
our testbed, we use 4 lanes (x4) of Gen2 PCIe per link, each 
with 2GB/s raw bandwidth. Due to the short link distance and 
simple protocol, per-node power for PCIe network is below 1 
watt, much lower than Ethernet (Table 1). 

To support blade servers and I/O virtualization, PCIe vendors 
now provide inter-system switching capabilities that support 
large port counts and high bandwidth. Instead of PCIe 
Transparent Bridging which manages all PCIe devices in the 
cluster under one operating system, we use PCIe Non-
Transparent Bridging (NTB [11]) which allows independent 
nodes in the cluster to each manage their own devices and use 
the communication path between them for DMA data 
transfers. For control and synchronization, NTB also 
provides doorbell and mailbox registers. We choose one node 
in the cluster as the primary root host and the remaining 
nodes as secondary leaves. 

Each node in our testbed has a PEX8609 1-port adapter 
connected to a central PEX8696 switch, forming a star 
topology. The switch provides two PCIe BAR registers to 
map a region of the address space (called “window”) on the 
source node to a region on the destination node.  

In our software implementation, we measure actual achieved 
latency and bandwidth. A 4-byte CPU read through the 
window from remote memory takes ~2 microseconds. DMA 
writes can be sustained at 1.56GB/s and reads at 1.06GB/s. 
DMA reads have lower bandwidth because they require a 
round-trip while the writes are unidirectional. Although PCIe 
links are point-to-point, PEX8696 can forward requests by 
overlaying one link’s destination window to a second link’s 
source window, without incurring extra latency.  

Multiple software interfaces can be implemented on top of 
the PCIe adapter/switch, with different tradeoffs between 
ease-of-porting and performance/efficiency. For example, 
socket and remote procedure call (RPC) interfaces preserve 
familiar APIs for the programmers, but add complexity in the 
protocol stack and hence software overhead. Encapsulating 
the hardware with a RDMA/DMA interface has high 
performance and efficiency, but requires porting existing 
applications. Based on our observation of the Hadoop 
framework, the bulk of network traffic in today’s data-centric 
processing systems usually involves file or block transfers 
between nodes. We have thus implemented a library for 
PCIe-based data transfer between nodes, and ported 
applications by replacing their existing socket-based data 
transfer code with function calls into this library.  

The PCIe data transfer library does not provide full-fledged 
network management functions, except for naming support. 
Nodes and devices in the cluster are initially discovered and 
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Xeon X5670 2.9  95 6-core 
Atom N570 1.66 8.5 2-core 
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Part Capacity Max Power (W) R/W BW 
(GB/s) 

Hard drive  1.5TB 15 0.125 
DRAM  4 GB 6 (DDR3) 12.8 

Intel X25-M  120 GB 2 0.25/0.1 
Fusion-IO  160 GB 11 0.75/0.7 

N
et

w
or
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Part # Ports Max Power (W) Raw BW 
(GB/s) 

1Gb/s 
Ethernet 

48-port 
switch 

3.9 = 1.9(a)+2(b) 
(NIC/switch) 

0.125 

10Gb/s 
Ethernet 

24-port 
switch 

17.3 =10(c)+7.3(d)

(NIC/switch) 
1.25 

InfiniBand 
QDR 

36-port 
switch 

21.1=15.5(e)+5.6(f) 
(Card/cable/switch) 

5 

PCIe Gen2 
with switch  

24 x4 
links 

< 1(g) 
(per x4 port) 

2 

Recently Proposed Energy-Efficient Configuration [3]  
CPU Atom Z540 1.9 GHz 2.4 W 1-core 
Store DDR2 2 GB 5.3 W < 10 GB/s
Store Flash 256 GB 6W (w/ controller) 2.2/1.1 
Net 1GbE 48-port 3.9W 0.125 

 

Sources: (a) Intel Gigabit CT Desktop Adapter; (b) HP ProCurve 
2650; (c) Intel NE020 SFP+; (d) Brocade TurboIron 24X Switch; 
(e) Mellanox ConnectX MHQH19 QDR adapter; (f) Mellanox 
InfiniScale IV IS5024 switch; (g) PLX PEX 8696 switch [8]. 

2



 

configured. The name-to-device mappings are stored in a 
table, and consulted by the library implementation at runtime.  

4. EVALUATION RESULTS 
With the testbed setup, we evaluate the performance and 
power of different system configurations. We augment the 
power model of Gordon [3] with devices listed in Table 1 and 
calculate the system-level power consumption including 
switches and system overhead power. Because our current 
testbed does not have 10GbE, we indirectly estimate impact 
of future 10GbE Ethernet by using (1) the 10GbE power 
numbers from Table 1 and (2) the performance of PCIe. 
Since 10GbE has lower raw bandwidth and higher CPU 
overhead for packet processing [12], such estimation only 
makes our discussion of PCIe benefits more conservative. 

4.1. Workloads with varying requirements 
(1) Distributed sort. Our benchmark models a cluster 
JouleSort [13] with a data shuffle phase that transfers the 
key/value pairs to their destination nodes, and a local sort 
phase (using nsort [14]).  

(2) Distributed grep. Our benchmark uses the grep dataset 
from Brown University [15] with a local grep phase (using 
the Unix grep utility) and a reduce phase that collects 
matching results to a central node. To vary the workload 
resource requirements, we examine two computation 
variants: “LoC” for low compute that matches simple patterns 
and “HiC” for high compute that matches complex patterns, 
and two network variants: “LoN” for low network with 10% 
matching entries and “HiN” for high network with 50% 
matching entries. Together these variants cover 4 different 
compute-to-communication ratios.  

(3) Hadoop/sort. Hadoop is a widely used MapReduce 
implementation for large-scale data processing. Our current 
implementation replaces the HTTP-based shuffle code with 
calls to our PCIe data transfer library. Although data 
replication allows higher speedups for PCIe, replication is not 
an inherent part of sort and can overemphasize the benefits of 
PCIe network. Therefore, HDFS block replication is not 
enabled here. 

4.2. Distributed sort results 
Figure 2 shows the execution time breakdown of sort 
between the local sort and shuffle phases for different system 
configurations. For example, the baseline “FIO/1GbE with 
1c” uses Fusion-IO and 1GbE with one 1.6GHz core, and 
“RAMFS/PCIe with 4c” uses RAMFS-based high-speed 
storage with PCIe and 4 cores.  

 
Figure 2: Relative execution time of sort 

Shown in the left half of Figure 2, the biggest speedups 
(ranging from 61% to 83%) are achieved by replacing 1GbE 

with PCIe, demonstrating the benefits of improved network 
bandwidth. With PCIe, the largest improvement can be 
achieved by using the “RAMFS” storage device. The changes 
in network and storage consequently expose the performance 
benefits of increasing processor core count, where 4-core 
systems with RAMFS achieve a 3.5X speedup. 

Table 2: Sort energy efficiency improvements 

Net 1GbE 10GbE PCIe 
Store FIO RAMFS FIO RAMFS FIO RAMFS
1-core 0% 12% 4% 16% 83% 105% 
2-core -25% 11% -5% 46% 45% 124% 
4-core -51% -14% -31% 33% -9% 78% 

Table 2 lists the energy efficiency improvements of various 
configurations. Similar to the performance results, gigabit 
Ethernet is an efficiency bottleneck; the efficiency gains by 
varying all other resources (shown in the first two columns) 
are marginal and often negative. Today’s Flash-storage also 
limits the benefits of upgrading to 10-gigabit Ethernet, 
mainly because the performance gained from 10GbE is offset 
by the increased network power. Combining RAMFS 
with10GbE does boost efficiency, by 16-46%.  

PCIe network, on the other hand, can provide 83% better 
efficiency for today’s storage, by combining its performance 
and power benefits. With re-balanced storage and network 
bandwidths, compute power can be increased (in the last 
column) to further improve energy efficiency.  

Overall, these results show that improving network 
performance and efficiency has the largest impact for sort. 
Although 10GbE provides speedups, its power needs to be 
reduced in order to achieve net improvement in efficiency. 
PCIe network can both improve performance and reduce 
power, leading to significant energy efficiency gains.  

4.3. Distributed grep results 
In order to understand the impact of the network subsystem 
on a range of workloads, we next examine grep, with 
varying compute and network needs. 

Figure 3 compares the runtime breakdowns of the “local 
grep” and “reduce” (network-heavy) phases, against the 
1GbE/1-core baseline, for 4 configurations each with four 
compute/network requirement ratios. For brevity, we only 
show the results of using up to 2 cores with Fusion-IO (as 
“RAMFS” storage only has marginal performance benefits).  

 
Figure 3: Relative execution time of cluster grep 

Since grep is more compute intensive than sort, 
increasing the core count from 1 to 2 shows the most impact 
on performance (shown by the differences between the two 
pairs of adjacent bars in each group). Still, replacing 1GbE 
with PCIe achieves 16% or more speedups for the low-
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network, low-compute workload (LoN LoC), and 56-82% 
speedups for the high-network, low-compute workload (HiN 
LoC). For high-compute workloads, where network is by 
definition not the bottleneck, high-speed networks only 
provide less than 6% speedups.  

Table 3: Grep energy efficiency improvements 
(Normalized to 1GbE/1-core, best results highlighted in bold) 

Net 1GbE PCIe 
CPU 1-core 2-core 1-core 2-core 4-core 

LoN LoC 0% 19% 31% 66% 66% 
LoN HiC 0% 45% 14% 60% 99% 
HiN LoC 0% -4% 77% 90% 55% 
HiN HiC 0% 39% 16% 62% 98% 

Table 3 compares the energy efficiency results between 
1GbE and PCIe for the grep workload. We add PCIe/4-
core to further illustrate the tradeoffs between scaling 
network vs. compute. With 1GbE and low-compute 
workloads (LoC), changing from 1-core to 2-core has low 
impact on efficiency, while moving to PCIe can improve the 
efficiency significantly (by 66% and 90%). However, the 
benefits of moving to 4-core depends on the workload’s 
compute intensity, as the 4-core based configurations achieve 
the best efficiency only with high-compute workloads (HiC).   

4.3. Hadoop/sort results 
Table 4 shows execution time and speedup for Hadoop/sort, 
with different configuration parameters. Hadoop is a complex 
distributed software with interrelated tuning knobs. We focus 
only on the impact of changing the network parameter and 
use the best performing compute/storage configuration as the 
baseline (i.e., four 2.9GHz cores running with Fusion-IO). 

Due to limited number of DMA mapping windows (two in 
our testbed), having many small DMAs tends to increase the 
overhead of PCIe networking. We hence experiment with 
different HDFS block sizes and MapReduce task sizes (split 
sizes) to control the data transfer granularity.  

Table 4: Hadoop/sort performance 

 
Block size / split size (MB) 

256 / 256 256/550 512/550
1GbE/socket 114.8 101.2 101.2 

PCIe/Data-transfer 105.2 84.2 87.0 
Speedup 9% 20% 16% 

Efficiency improvement 11% 24% 20% 

The best runtime and speedup is achieved with a relatively 
large MapReduce input task size (last two columns), while 
HDFS block size has a second-order performance effect. 
PCIe network can improve Hadoop/sort execution time by up 
to 20%. The energy efficiency improvements are slightly 
higher than the speedups, mainly because the network power 
is relatively small in this configuration.  

5. DISCUSSION 
The previous section demonstrated the potential performance 
and power benefits of PCIe networks with the data-centric 
workloads that we have ported. However, there are still many 
open challenges regarding the appropriate use-cases for PCIe 
networks and using PCIe as part of the datacenter network. 
Below, we discuss some of the limitations and challenges of 
PCIe networks as well as new opportunities enabled by the 
high-performance energy-efficient network. 

Applicability of PCIe networks 
Although our results show that data-centric workloads 
running on power-efficient nodes benefit from PCIe, it is not 
a solution applicable to all scenarios. Compute-heavy or 
communication-light workloads cannot leverage PCIe’s 
ample bandwidth. Additionally, high-power server clusters, 
where network contributes only a small fraction to the total 
power, are unlikely to take advantage of PCIe’s low power. 
Therefore it is important to consider the use-case when 
implementing PCIe networks. 

Furthermore, the scale of the network impacts how 
extensively PCIe can be used. PCIe is designed as a local I/O 
fabric to connect only tens of nodes, as compared to Ethernet, 
which can connect thousands of nodes. Thus while PCIe can 
be used alone to provide a high performance local network 
for small-scale clusters, at a datacenter-scale such local 
networks must be integrated with Ethernet or InfiniBand to 
provide appropriate connectivity.  

Scalability  
The discussion above opens up new questions regarding PCIe 
within scalable networks. What topologies are most 
appropriate for placing small, local PCIe networks within a 
larger scale, Ethernet connected network? Alternatively, is it 
possible to build a scalable network solely out of PCIe, for 
example, using a tree-based hierarchy?  

As an evolutionary path, PCIe local network can replace the 
edge switches/cables in an Ethernet or InfiniBand-based 
global datacenter network (e.g., [5][6][7]). Such 
combinations take advantage of high-bandwidth low-power 
PCIe local networks and the scalability of Ethernet or 
Infiniband. This approach, however, requires the PCIe switch 
to interface between the two tiers of networks and appropriate 
abstractions of the network heterogeneity for applications. 
These hybrid designs will help to provide a comparison 
baseline for an all-PCIe network. 

At a lower level, there are questions regarding how many 
nodes a PCIe switch can support; this capability directly 
affects local network size, performance and efficiency. 
Currently, the PLX switch’s limited number of DMA 
windows is a scalability bottleneck, as multiplexing 
connections adds DMA setup overheads and reduces 
performance. Future PCIe switches, however, are expected to 
address this limit.  

Manageability and programmability 
Adding a heterogeneous network layer can potentially 
compound already complex datacenter network management. 
One way to encapsulate the heterogeneity is for the PCIe 
network to provide the same abstraction to the rest of the 
“global” network. Porting Open vSwitch [16] on PCIe, 
tunneling Ethernet over PCIe, and virtualizing the datacenter 
network [17] are a few example approaches to provide the 
Ethernet control plane while retaining PCIe’s 
performance/power benefits in the data plane.  

Another challenge is to choose the right API and protocol to 
expose the PCIe local networks. Figure 4 lists and compares 
several network stack options. On the left hand side, Ethernet 
with socket interface is used by a wide spectrum of 
applications but has high overhead. On the right hand side, 
our data-transfer library directly exposes PCIe with better 
efficiency, while InfiniBand can be exposed through either 
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the verbs or socket interface [18]. These approaches are 
based on different hardware and software designs, 
representing potential tradeoff points along the efficiency and 
programmability/portability spectrum.  

 
Figure 4: Network stack options (based on [18]) 

Fortunately, our early experiences indicate that porting 
modern software is quite feasible. Only minor, localized 
changes were made to Hadoop to exploit the benefits of PCIe 
network due to its highly modular code.  

Similar to our study, Sur et al. [18] examine whether 
InfiniBand can benefit Hadoop HDFS. They demonstrate the 
performance advantage of InfiniBand as well as the 
feasibility of application porting. InfiniBand has higher costs 
than PCIe, but we leave the comparison as future work.  

Fault tolerance 
PCIe Non-Transparent Bridging allows nodes in the cluster to 
be in separate fault domains and support failover. Such fault-
tolerance features, however, are insufficient for an enterprise-
grade network. There are still open research questions 
regarding the fault model for PCIe network and 
implementing such a fault model while retaining PCIe’s 
simplicity and performance advantages. 

New opportunities 
With a low-latency high-bandwidth network like PCIe, the 
overhead of accessing remote compute, memory, and storage 
resources can be much lower than what is possible today. 
Such improved performance provides datacenter resource 
managers new flexibility in pooling and using resources from 
different servers, or even in building disaggregated servers 
(e.g., [19]).  

Another opportunity lies in integrating PCIe local networks 
with an optical datacenter network. The PCIe switch can 
aggregate the network traffic from its local network and share 
the optical cables connecting to the datacenter network, 
thereby amortizing the high cost of optics over all the servers 
within its local network.   

6. CONCLUSIONS 
Energy-efficient data-centric computing platforms will have 
to address computation, storage and communication 
subsystems in a holistic, balanced manner. Recent 
improvements in efficient compute and storage devices now 
leave network as a potential bottleneck, calling for solutions 
to simultaneously improve performance and reduce power.  

In this paper, we demonstrate the benefits of power-efficient 
networks with PCIe for data-centric computing. With a Gen2 

PCIe switch in Non-Transparent Bridging mode, each 4-lane 
link can achieve 1.56GB/s bandwidth using less than 1 watt, 
with little software overhead. When such capabilities are 
exposed through a simple data transfer library, they can 
achieve more than 80% application performance gains and 
enable balanced configurations that are 60-124% more 
energy efficient than an aggressive baseline.  

Many challenges remain before a PCIe network can become 
part of the power-efficient datacenter network, although none 
of them seems unsurpassable. New opportunities also abound 
in exploiting low-latency, low-overhead PCIe for emerging 
applications.   
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