
Power-Efficient Networking for Balanced System
Designs: Early Experiences with PCIe

John Byrne, Jichuan Chang, Kevin T. Lim, Laura Ramirez, Parthasarathy Ranganathan
Hewlett Packard Labs, Palo Alto

ABSTRACT
Recent proposals using low-power processors and Flash-
based storage can dramatically improve the energy-efficiency
of compute and storage subsystems in data-centric
computing. However, in a balanced system design, these
changes call for matching improvement in the network
subsystem as well. Conventional Ethernet-based networks are
a potential energy-efficiency bottleneck due to the limited
performance of gigabit Ethernet and the high power overhead
of 10-gigbit Ethernet. In this paper, we evaluate the benefits
of using an alternative, high-bandwidth, low-power,
interconnect—PCIe—for power-efficient networking. Our
experiments using PCIe’s Non-Transparent Bridging for data
transfer demonstrate significant performance gains at lower
power, leading to 60-124% better energy efficiency. Early
experiences with PCIe clustering also point to several
challenges of PCIe-based networks and new opportunities for
low-latency power-efficient datacenter networking.

1. INTRODUCTION
Achieving power efficiency is a key challenge in data-centric
computing, as the costs of power and cooling become a major
component of the total costs of ownership. Critically, the I/O
intensity of these workloads (which leads to new and often
reduced compute-to-IO ratios) and the data communication
needed in large-scale systems necessitate a balanced system
design approach to improve energy efficiency.

Recent proposals [1][2][3] combine low-power, embedded-
class processors with Flash-based storage, designing
“microservers” that achieve 2-100 times better energy
efficiency by rebalancing compute versus I/O. These
proposals exploit processors optimized for performance/watt
and energy proportionality [4], reducing the peak and idle
power of the compute subsystem. In parallel, they improve
the storage system’s energy efficiency by adopting hardware
and software optimizations for solid state storage.

The rapid changes in compute and storage, however, expose
the network as a potential performance and energy-efficiency
bottleneck. However, prior microserver proposals focus
primarily on Ethernet and socket programming as the default
hardware/software combination for the network. This
decision is partly because there are few alternatives beside
Ethernet, but also acknowledges the business advantages of
traditional networks. Ethernet has the cost benefits of

commodity hardware, and socket programming is widely
used in data-centric software. For similar reasons, recent
work in improving the scalability and energy-proportionality
of data center networks [5][6][7] also assume Ethernet.

Ethernet, however, has high performance and power
overheads due to the need to drive longer-distance cable and
its high packet processing requirements. On compute/storage-
optimized platforms in particular, the performance and power
overheads of gigabit Ethernet (1GbE) can become a limiting
factor. 10-gigabit Ethernet (10GbE) may alleviate the
performance issue but consumes more power.

In this paper, we examine the opportunities and challenges of
using an alternative, non-Ethernet interconnect that has
higher performance and lower power. To match the cost
benefits of Ethernet, we choose a commodity interconnect—
PCIe—and demonstrate its performance and power benefits
in small clusters. Our goals are to understand the benefits of
PCIe as a “local” network and the challenges in making it
part of “global” datacenter-scale networks.

We make two main contributions. (1) Using workloads with
varied compute, storage and network requirements, we
examine the performance and power impacts of different
networks on the overall system. Our experiments identify
today’s Ethernet as an important performance and energy-
efficiency bottleneck, especially for data-centric systems with
power-optimized compute and storage subsystems. (2) We
demonstrate the performance and power benefits of PCIe-
based networks with a prototype system. Performance
measurements show that the PCIe-based network provides
more than 80% speedup over 1GbE, at even lower power.
With non-intrusive modifications to the application software,
Hadoop/sort runs 20% faster. Overall, the PCIe network
enables 60-124% better energy efficiency.

2. PRIOR AND PROTOTYPED DESIGNS
To illustrate the energy efficiency improvement trends, Table
1 lists examples of today’s compute, storage and network
components, and their characteristics in power and
performance (for example, in raw bandwidths).
Typical clusters use server processors such as Xeon X5670
and multiple rotational hard drives, both of which are power
hungry. Such combinations are a mismatch for data-centric
workloads which often require higher I/O performance but
less compute power. This observation has motivated recent
proposals (e.g., [1][2][3]) to strike a new compute-to-I/O
balance, using embedded-class processors with fast, efficient,
Flash-based storage as an energy-efficient data-centric
computing platform.

For example, the bottom half of Table 1 shows a Gordon
node [3]. This design packages an Atom processor with
DDR2 memory, optimized Flash storage, chipset, and gigabit

1

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
HotPower '11, October 23, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0981-3/11/10 ... $10.00.

Figure 1: Testbed cluster (3 nodes with PCIe)

Ethernet in an add-on card. Despite their efficiency
improvements, such proposed systems typically use gigabit
Ethernet and do not investigate other network options.

To explore the balance between compute, storage and
network subsystems, we build a small testbed cluster to
measure the performance and power impact of different
subsystems (Figure 1) and study the following options:

- Compute: Our systems use the Xeon X5670 processor
running at 1.6GHz in low-power mode. The processor uses
9 watts per core peak power, and is configured to use 1, 2,
or 4 cores.

- Memory and Storage: All the systems use 4GB DDR3
memory (6 watt). For storage, we study two
configurations: (i) a Fusion-IO ioDrive SLC 160GB
(FIO) with power modeled after [3] and (ii) a RAM-based
file system (RAMFS) to model future NVM-based storage.

- Network: We study two main networks: (i) a baseline
gigabit Ethernet (1GbE) with NIC and switch power
values as in Table 1 and (ii) a PCIe network using the PLX
PEX 8696 switch with 2GB/s x4 lanes (PCIe) [8].

The devices above have small form factors and low power
requirements. Although currently hosted in workstations,

they can be placed on small PCBs connected to a PCIe-
switched midplane. Such compact designs allow the use of
PCIe in a medium-size cluster (e.g., 48-node).

3. PCIE-BASED NETWORK
PCI-express (PCIe) is a commodity IO interconnect widely
used in motherboards and backplanes. PCIe as a network
fabric also appears in emerging system proposals (e.g.,
SeaMicro [9]). With appropriate provisioning for IO
consolidation, PCIe can be cost-competitive with Ethernet.
For example, Leigh et al. [10] show the cost/bandwidth
advantage of PCIe over Ethernet. Each link between PCIe
devices can have 1 to 32 lanes with increasing bandwidths. In
our testbed, we use 4 lanes (x4) of Gen2 PCIe per link, each
with 2GB/s raw bandwidth. Due to the short link distance and
simple protocol, per-node power for PCIe network is below 1
watt, much lower than Ethernet (Table 1).

To support blade servers and I/O virtualization, PCIe vendors
now provide inter-system switching capabilities that support
large port counts and high bandwidth. Instead of PCIe
Transparent Bridging which manages all PCIe devices in the
cluster under one operating system, we use PCIe Non-
Transparent Bridging (NTB [11]) which allows independent
nodes in the cluster to each manage their own devices and use
the communication path between them for DMA data
transfers. For control and synchronization, NTB also
provides doorbell and mailbox registers. We choose one node
in the cluster as the primary root host and the remaining
nodes as secondary leaves.

Each node in our testbed has a PEX8609 1-port adapter
connected to a central PEX8696 switch, forming a star
topology. The switch provides two PCIe BAR registers to
map a region of the address space (called “window”) on the
source node to a region on the destination node.

In our software implementation, we measure actual achieved
latency and bandwidth. A 4-byte CPU read through the
window from remote memory takes ~2 microseconds. DMA
writes can be sustained at 1.56GB/s and reads at 1.06GB/s.
DMA reads have lower bandwidth because they require a
round-trip while the writes are unidirectional. Although PCIe
links are point-to-point, PEX8696 can forward requests by
overlaying one link’s destination window to a second link’s
source window, without incurring extra latency.

Multiple software interfaces can be implemented on top of
the PCIe adapter/switch, with different tradeoffs between
ease-of-porting and performance/efficiency. For example,
socket and remote procedure call (RPC) interfaces preserve
familiar APIs for the programmers, but add complexity in the
protocol stack and hence software overhead. Encapsulating
the hardware with a RDMA/DMA interface has high
performance and efficiency, but requires porting existing
applications. Based on our observation of the Hadoop
framework, the bulk of network traffic in today’s data-centric
processing systems usually involves file or block transfers
between nodes. We have thus implemented a library for
PCIe-based data transfer between nodes, and ported
applications by replacing their existing socket-based data
transfer code with function calls into this library.

The PCIe data transfer library does not provide full-fledged
network management functions, except for naming support.
Nodes and devices in the cluster are initially discovered and

PLX switch

ioDrive ioDrive

Table 1: Component performance and power
C

P
U

 Part GHz Max Power (W) # Cores
Xeon X5670 2.9 95 6-core
Atom N570 1.66 8.5 2-core

M
em

or
y

an
d

S
to

ra
ge

Part Capacity Max Power (W) R/W BW
(GB/s)

Hard drive 1.5TB 15 0.125
DRAM 4 GB 6 (DDR3) 12.8

Intel X25-M 120 GB 2 0.25/0.1
Fusion-IO 160 GB 11 0.75/0.7

N
et

w
or

k

Part # Ports Max Power (W) Raw BW
(GB/s)

1Gb/s
Ethernet

48-port
switch

3.9 = 1.9(a)+2(b)
(NIC/switch)

0.125

10Gb/s
Ethernet

24-port
switch

17.3 =10(c)+7.3(d)

(NIC/switch)
1.25

InfiniBand
QDR

36-port
switch

21.1=15.5(e)+5.6(f)
(Card/cable/switch)

5

PCIe Gen2
with switch

24 x4
links

< 1(g)
(per x4 port)

2

Recently Proposed Energy-Efficient Configuration [3]
CPU Atom Z540 1.9 GHz 2.4 W 1-core
Store DDR2 2 GB 5.3 W < 10 GB/s
Store Flash 256 GB 6W (w/ controller) 2.2/1.1
Net 1GbE 48-port 3.9W 0.125

Sources: (a) Intel Gigabit CT Desktop Adapter; (b) HP ProCurve
2650; (c) Intel NE020 SFP+; (d) Brocade TurboIron 24X Switch;
(e) Mellanox ConnectX MHQH19 QDR adapter; (f) Mellanox
InfiniScale IV IS5024 switch; (g) PLX PEX 8696 switch [8].

2

configured. The name-to-device mappings are stored in a
table, and consulted by the library implementation at runtime.

4. EVALUATION RESULTS
With the testbed setup, we evaluate the performance and
power of different system configurations. We augment the
power model of Gordon [3] with devices listed in Table 1 and
calculate the system-level power consumption including
switches and system overhead power. Because our current
testbed does not have 10GbE, we indirectly estimate impact
of future 10GbE Ethernet by using (1) the 10GbE power
numbers from Table 1 and (2) the performance of PCIe.
Since 10GbE has lower raw bandwidth and higher CPU
overhead for packet processing [12], such estimation only
makes our discussion of PCIe benefits more conservative.

4.1. Workloads with varying requirements
(1) Distributed sort. Our benchmark models a cluster
JouleSort [13] with a data shuffle phase that transfers the
key/value pairs to their destination nodes, and a local sort
phase (using nsort [14]).

(2) Distributed grep. Our benchmark uses the grep dataset
from Brown University [15] with a local grep phase (using
the Unix grep utility) and a reduce phase that collects
matching results to a central node. To vary the workload
resource requirements, we examine two computation
variants: “LoC” for low compute that matches simple patterns
and “HiC” for high compute that matches complex patterns,
and two network variants: “LoN” for low network with 10%
matching entries and “HiN” for high network with 50%
matching entries. Together these variants cover 4 different
compute-to-communication ratios.

(3) Hadoop/sort. Hadoop is a widely used MapReduce
implementation for large-scale data processing. Our current
implementation replaces the HTTP-based shuffle code with
calls to our PCIe data transfer library. Although data
replication allows higher speedups for PCIe, replication is not
an inherent part of sort and can overemphasize the benefits of
PCIe network. Therefore, HDFS block replication is not
enabled here.

4.2. Distributed sort results
Figure 2 shows the execution time breakdown of sort
between the local sort and shuffle phases for different system
configurations. For example, the baseline “FIO/1GbE with
1c” uses Fusion-IO and 1GbE with one 1.6GHz core, and
“RAMFS/PCIe with 4c” uses RAMFS-based high-speed
storage with PCIe and 4 cores.

Figure 2: Relative execution time of sort

Shown in the left half of Figure 2, the biggest speedups
(ranging from 61% to 83%) are achieved by replacing 1GbE

with PCIe, demonstrating the benefits of improved network
bandwidth. With PCIe, the largest improvement can be
achieved by using the “RAMFS” storage device. The changes
in network and storage consequently expose the performance
benefits of increasing processor core count, where 4-core
systems with RAMFS achieve a 3.5X speedup.

Table 2: Sort energy efficiency improvements

Net 1GbE 10GbE PCIe
Store FIO RAMFS FIO RAMFS FIO RAMFS
1-core 0% 12% 4% 16% 83% 105%
2-core -25% 11% -5% 46% 45% 124%
4-core -51% -14% -31% 33% -9% 78%

Table 2 lists the energy efficiency improvements of various
configurations. Similar to the performance results, gigabit
Ethernet is an efficiency bottleneck; the efficiency gains by
varying all other resources (shown in the first two columns)
are marginal and often negative. Today’s Flash-storage also
limits the benefits of upgrading to 10-gigabit Ethernet,
mainly because the performance gained from 10GbE is offset
by the increased network power. Combining RAMFS
with10GbE does boost efficiency, by 16-46%.

PCIe network, on the other hand, can provide 83% better
efficiency for today’s storage, by combining its performance
and power benefits. With re-balanced storage and network
bandwidths, compute power can be increased (in the last
column) to further improve energy efficiency.

Overall, these results show that improving network
performance and efficiency has the largest impact for sort.
Although 10GbE provides speedups, its power needs to be
reduced in order to achieve net improvement in efficiency.
PCIe network can both improve performance and reduce
power, leading to significant energy efficiency gains.

4.3. Distributed grep results
In order to understand the impact of the network subsystem
on a range of workloads, we next examine grep, with
varying compute and network needs.

Figure 3 compares the runtime breakdowns of the “local
grep” and “reduce” (network-heavy) phases, against the
1GbE/1-core baseline, for 4 configurations each with four
compute/network requirement ratios. For brevity, we only
show the results of using up to 2 cores with Fusion-IO (as
“RAMFS” storage only has marginal performance benefits).

Figure 3: Relative execution time of cluster grep

Since grep is more compute intensive than sort,
increasing the core count from 1 to 2 shows the most impact
on performance (shown by the differences between the two
pairs of adjacent bars in each group). Still, replacing 1GbE
with PCIe achieves 16% or more speedups for the low-

0%

20%

40%

60%

80%

100%

1c 2c 4c 1c 2c 4c 1c 2c 4c 1c 2c 4c

FIO/1GbE FIO/PCIe RAMFS/1GbE RAMFS/PCIe

Shuffle
Local sort

0%

20%

40%

60%

80%

100%

1
G
b
E/
1
c

1
G
b
E/
2
c

P
C
Ie
/1
c

P
C
Ie
/2
c

1
G
b
E/
1
c

1
G
b
E/
2
c

P
C
Ie
/1
c

P
C
Ie
/2
c

1
G
b
E/
1
c

1
G
b
E/
2
c

P
C
Ie
/1
c

P
C
Ie
/2
c

1
G
b
E/
1
c

1
G
b
E/
2
c

P
C
Ie
/1
c

P
C
Ie
/2
c

LoN LoC LoN HiC HiN LoC HiN HiC

Reduce

Local grep

3

network, low-compute workload (LoN LoC), and 56-82%
speedups for the high-network, low-compute workload (HiN
LoC). For high-compute workloads, where network is by
definition not the bottleneck, high-speed networks only
provide less than 6% speedups.

Table 3: Grep energy efficiency improvements
(Normalized to 1GbE/1-core, best results highlighted in bold)

Net 1GbE PCIe
CPU 1-core 2-core 1-core 2-core 4-core

LoN LoC 0% 19% 31% 66% 66%
LoN HiC 0% 45% 14% 60% 99%
HiN LoC 0% -4% 77% 90% 55%
HiN HiC 0% 39% 16% 62% 98%

Table 3 compares the energy efficiency results between
1GbE and PCIe for the grep workload. We add PCIe/4-
core to further illustrate the tradeoffs between scaling
network vs. compute. With 1GbE and low-compute
workloads (LoC), changing from 1-core to 2-core has low
impact on efficiency, while moving to PCIe can improve the
efficiency significantly (by 66% and 90%). However, the
benefits of moving to 4-core depends on the workload’s
compute intensity, as the 4-core based configurations achieve
the best efficiency only with high-compute workloads (HiC).

4.3. Hadoop/sort results
Table 4 shows execution time and speedup for Hadoop/sort,
with different configuration parameters. Hadoop is a complex
distributed software with interrelated tuning knobs. We focus
only on the impact of changing the network parameter and
use the best performing compute/storage configuration as the
baseline (i.e., four 2.9GHz cores running with Fusion-IO).

Due to limited number of DMA mapping windows (two in
our testbed), having many small DMAs tends to increase the
overhead of PCIe networking. We hence experiment with
different HDFS block sizes and MapReduce task sizes (split
sizes) to control the data transfer granularity.

Table 4: Hadoop/sort performance

Block size / split size (MB)

256 / 256 256/550 512/550
1GbE/socket 114.8 101.2 101.2

PCIe/Data-transfer 105.2 84.2 87.0
Speedup 9% 20% 16%

Efficiency improvement 11% 24% 20%

The best runtime and speedup is achieved with a relatively
large MapReduce input task size (last two columns), while
HDFS block size has a second-order performance effect.
PCIe network can improve Hadoop/sort execution time by up
to 20%. The energy efficiency improvements are slightly
higher than the speedups, mainly because the network power
is relatively small in this configuration.

5. DISCUSSION
The previous section demonstrated the potential performance
and power benefits of PCIe networks with the data-centric
workloads that we have ported. However, there are still many
open challenges regarding the appropriate use-cases for PCIe
networks and using PCIe as part of the datacenter network.
Below, we discuss some of the limitations and challenges of
PCIe networks as well as new opportunities enabled by the
high-performance energy-efficient network.

Applicability of PCIe networks
Although our results show that data-centric workloads
running on power-efficient nodes benefit from PCIe, it is not
a solution applicable to all scenarios. Compute-heavy or
communication-light workloads cannot leverage PCIe’s
ample bandwidth. Additionally, high-power server clusters,
where network contributes only a small fraction to the total
power, are unlikely to take advantage of PCIe’s low power.
Therefore it is important to consider the use-case when
implementing PCIe networks.

Furthermore, the scale of the network impacts how
extensively PCIe can be used. PCIe is designed as a local I/O
fabric to connect only tens of nodes, as compared to Ethernet,
which can connect thousands of nodes. Thus while PCIe can
be used alone to provide a high performance local network
for small-scale clusters, at a datacenter-scale such local
networks must be integrated with Ethernet or InfiniBand to
provide appropriate connectivity.

Scalability
The discussion above opens up new questions regarding PCIe
within scalable networks. What topologies are most
appropriate for placing small, local PCIe networks within a
larger scale, Ethernet connected network? Alternatively, is it
possible to build a scalable network solely out of PCIe, for
example, using a tree-based hierarchy?

As an evolutionary path, PCIe local network can replace the
edge switches/cables in an Ethernet or InfiniBand-based
global datacenter network (e.g., [5][6][7]). Such
combinations take advantage of high-bandwidth low-power
PCIe local networks and the scalability of Ethernet or
Infiniband. This approach, however, requires the PCIe switch
to interface between the two tiers of networks and appropriate
abstractions of the network heterogeneity for applications.
These hybrid designs will help to provide a comparison
baseline for an all-PCIe network.

At a lower level, there are questions regarding how many
nodes a PCIe switch can support; this capability directly
affects local network size, performance and efficiency.
Currently, the PLX switch’s limited number of DMA
windows is a scalability bottleneck, as multiplexing
connections adds DMA setup overheads and reduces
performance. Future PCIe switches, however, are expected to
address this limit.

Manageability and programmability
Adding a heterogeneous network layer can potentially
compound already complex datacenter network management.
One way to encapsulate the heterogeneity is for the PCIe
network to provide the same abstraction to the rest of the
“global” network. Porting Open vSwitch [16] on PCIe,
tunneling Ethernet over PCIe, and virtualizing the datacenter
network [17] are a few example approaches to provide the
Ethernet control plane while retaining PCIe’s
performance/power benefits in the data plane.

Another challenge is to choose the right API and protocol to
expose the PCIe local networks. Figure 4 lists and compares
several network stack options. On the left hand side, Ethernet
with socket interface is used by a wide spectrum of
applications but has high overhead. On the right hand side,
our data-transfer library directly exposes PCIe with better
efficiency, while InfiniBand can be exposed through either

4

the verbs or socket interface [18]. These approaches are
based on different hardware and software designs,
representing potential tradeoff points along the efficiency and
programmability/portability spectrum.

Figure 4: Network stack options (based on [18])

Fortunately, our early experiences indicate that porting
modern software is quite feasible. Only minor, localized
changes were made to Hadoop to exploit the benefits of PCIe
network due to its highly modular code.

Similar to our study, Sur et al. [18] examine whether
InfiniBand can benefit Hadoop HDFS. They demonstrate the
performance advantage of InfiniBand as well as the
feasibility of application porting. InfiniBand has higher costs
than PCIe, but we leave the comparison as future work.

Fault tolerance
PCIe Non-Transparent Bridging allows nodes in the cluster to
be in separate fault domains and support failover. Such fault-
tolerance features, however, are insufficient for an enterprise-
grade network. There are still open research questions
regarding the fault model for PCIe network and
implementing such a fault model while retaining PCIe’s
simplicity and performance advantages.

New opportunities
With a low-latency high-bandwidth network like PCIe, the
overhead of accessing remote compute, memory, and storage
resources can be much lower than what is possible today.
Such improved performance provides datacenter resource
managers new flexibility in pooling and using resources from
different servers, or even in building disaggregated servers
(e.g., [19]).

Another opportunity lies in integrating PCIe local networks
with an optical datacenter network. The PCIe switch can
aggregate the network traffic from its local network and share
the optical cables connecting to the datacenter network,
thereby amortizing the high cost of optics over all the servers
within its local network.

6. CONCLUSIONS
Energy-efficient data-centric computing platforms will have
to address computation, storage and communication
subsystems in a holistic, balanced manner. Recent
improvements in efficient compute and storage devices now
leave network as a potential bottleneck, calling for solutions
to simultaneously improve performance and reduce power.

In this paper, we demonstrate the benefits of power-efficient
networks with PCIe for data-centric computing. With a Gen2

PCIe switch in Non-Transparent Bridging mode, each 4-lane
link can achieve 1.56GB/s bandwidth using less than 1 watt,
with little software overhead. When such capabilities are
exposed through a simple data transfer library, they can
achieve more than 80% application performance gains and
enable balanced configurations that are 60-124% more
energy efficient than an aggressive baseline.

Many challenges remain before a PCIe network can become
part of the power-efficient datacenter network, although none
of them seems unsurpassable. New opportunities also abound
in exploiting low-latency, low-overhead PCIe for emerging
applications.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the contribution of
Steven Pelley during the early phase of the project, and
discussions with Indrajit Roy, Bruce Walker, Mitch Wright,
Siamak Tavellaei, Moray McLaren and Jeff Mogul as well as
valuable reviewer comments.

REFERENCES
[1] K. T. Lim, P. Ranganathan, et al. Understanding and designing

new server architectures for emerging warehouse-computing
environments. ISCA 2008.

[2] D. Andersen, J. Franklin, et al. FAWN: a fast array of wimpy
nodes. SOSP 2009.

[3] A. Caulfield, L. Grupp, and S. Swanson. Gordon: using flash
memory to build fast, power-efficient clusters for data-intensive
applications. ASPLOS 2009.

[4] L. A. Barroso and U. Hölzle. The case for energy-proportional
computing. IEEE Computer, 40(12):33–37, 2007.

[5] R. N. Mysore, A. Pamboris, et al. PortLand: A Scalable Fault-
Tolerant Layer 2 Data Center Network Fabric. SIGCOMM
2009.

[6] A. Greenberg, J. R. Hamilton, et al. VL2: A Scalable and
Flexible Data Center Network. SIGCOMM 2009.

[7] D. Abts, M. R. Marty, et al. Energy Proportional Datacenter
Networks. ISCA 2010.

[8] PLX. PEX 8696 96-Lane, 24-Port PCIe Gen 2 Switch.
http://www.plxtech.com/products/expresslane/pex8696

[9] Anil Rao. SeaMicro Technology Overview.
http://www.seamicro.com/sites/default/files/SM_TO01_64_v1
%208.pdf

[10] K. Leigh, P. Ranganathan, et al. Fabric Convergence
Implications on Systems Architecture. HPCA 2008.

[11] J. Regula. Using Non-Transparent Bridging in PCI Express
Systems. 2004.

[12] K. K. Ram, J. R. Santos, et al. Achieving 10 Gb/s using safe
and transparent network interface virtualization. VEE 2009.

[13] S. Rivoire, M. A. Shah, et al. JouleSort: a balanced energy-
efficiency benchmark. SIGMOD 2007.

[14] Nsort. http://www.ordinal.com/

[15] A. Pavlo, E. Paulson, et al. A Comparison of Approaches to
Large-Scale Data Analysis. SIGMOD 2009.

[16] Open vSwitch. http://openvswitch.org/

[17] J. Mudigonda, P. Yalagandula, et al. NetLord: A Scalable
Multi-Tenant Network Architecture for Virtualized
Datacenters. SIGCOMM 2011.

[18] S. Sur, H. Wang, et al. Can High-Performance Interconnect
Benefit Hadoop Distributed File System? MASVDC 2010.

[19] K. T. Lim, J. Chang, et al. Disaggregated Memory for
Expansion and Sharing in Blade Servers. ISCA 2009.

Socket Verbs
Data

transfer lib

TCP/IP

Ethernet
driver RDMA / DMA

IP over
InfiniBand

Ethernet InfiniBand PCIe

SDP

Protocol

Hardware
(Adapter
+ switch)

Application

Longer (link distance) Shorter

Higher (software overhead) Lower

Easier to port application More efficient

5

