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ABSTRACT 

As brown energy costs grow, renewable energy becomes 
more widely used. Previous work focused on using 
immediately available green energy to supplement the non-
renewable, or brown energy at the cost of canceling and 
rescheduling jobs whenever the green energy availability is 
too low [16]. In this paper we design an adaptive data center 
job scheduler which utilizes short term prediction of solar and 
wind energy production.  This enables us to scale the number 
of jobs to the expected energy availability, thus reducing the 
number of cancelled jobs by 4x and improving green energy 
usage efficiency by 3x over just utilizing the immediately 
available green energy.  
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1. INTRODUCTION 
Green energy sources promise to mitigate the issues 
surrounding non-renewable generation, but their output is 
very susceptible to environmental changes. This limits the use 
of green energy in time-sensitive applications. Prediction can 
reduce the uncertainty of the available resources, allowing 
end-users to scale demand with the predicted supply [17]. 
Data centers are a significant source of energy consumption 
with an estimated 2% global greenhouse gas emissions 
attributed to them [18]. However, the time-sensitive nature of 
their service-level workloads has precluded the use of green 
energy, as jobs might need to be stopped when the available 
green energy drops [16].  

Data centers also have longer-running batch jobs (on the order 
of tens of minutes [9]) whose performance is measured in 
terms of throughput and job completion times instead of 
latency guarantees (e.g. web crawling, index update in search 
engines, web log analysis [07]). A number of computing 
frameworks have been developed to simplify the process of 
those jobs.  Examples include MapReduce [25], Dryad [26], 
and Pregel [5].  The fault-tolerant nature of these frameworks 
mitigates source instability, allowing execution of a subset of 
the tasks in a job in order to scale with the available energy, 
as well as allowing re-execution of cancelled tasks that have 
been stopped due to a sudden lack of input energy.  

Green energy prediction over short time intervals (tens of 
minutes) alleviates these issues by scaling the workload to the 
expected available green energy, resulting in better 
maintenance of forward progress and allowing more 
tasks/jobs to continue their execution even if instantaneous 
green energy supply drops below the necessary amount. The 
system offsets the remainder of the immediate need with 
brown energy with the assurance that over the prediction 
interval the average green energy will ultimately be available. 
This allows a more efficient use of the available energy; 
reducing the amount of wasted green energy and the number 
of tasks/jobs that must be re-executed; and ultimately, 
increasing the overall throughput of the data center.  

The contribution of this paper is to develop a new data center 
job scheduling methodology that effectively leverages green 
energy prediction. We simulate a data center of 200 Intel 
Nehalem servers using measured data obtained on a small test 
bed of Nehalem servers that ran a mix of services (Rubis [6]) 
and batch jobs (MapReduce[8]).  Our scheduler ensures that 
the required response time targets for services are met while 
maximizing the completion times and the number of 
MapReduce tasks run.  We use green power data from a solar 
installation in San Diego [15], and wind power from National 
Renewable Energy Laboratory (NREL) [14] as our sources of 
green energy. Our results show maximum increase of 3x in 
green energy usage efficiency, a 1.6x increase in the amount 
of work performed by green energy over brown energy, and a 
7.7x reduction in the number of jobs terminated due to the 
lack of instantaneously available green energy. 

2. RELATED WORK 

2.1 Energy Prediction 
Solar energy prediction is typically obtained with estimated 
weighted moving average (EWMA) models, because of its 
relative consistency and periodic patterns [19]. As long as the 
weather conditions remain consistent within a period, the 
prediction is accurate, but becomes inaccurate, with mean 
error well over 20%, with frequent weather changes. Recent 
work utilizing small-scale solar generation uses a weather-
conditioned moving average (WCMA), taking into account 
the mean value across days and a measured factor of solar 
conditions in the present day relative to previous days [20]. 
While this work provides only a single future interval of 
prediction, it specifically addresses inconsistent conditions, 
with a mean error of under 10%.  

Wind energy prediction can be separated into two major 
areas: time-series analysis of power data; and wind speed 
prediction and conversion into power. Kusiak et al. [21] 
presents a comparison of several methodologies of time-series 
modeling of wind farms. The boosting-tree algorithm with 
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both wind speed and power data performs well in their 
analysis, while the integrated model, a time-series analysis 
utilizing only wind speed measurements, performs poorly for 
calculating wind power, likely due to the cubic relationship 
between wind speed and power. Giebel et al. [22] focuses on 
the latter, describing a number of meteorological models 
including Numerical Weather Prediction (NWP), which 
forecasts atmospheric conditions over longer term. They use 
the resulting predictions to simulate the output of a wind farm 
providing accurate estimates for 3-6 hour time periods. 
However, this comes at the cost of needed a whole data center 
to calculate prediction. Sanchez et al. [24] suggest a statistical 
forecasting system that generates power curves (wind speed 
vs. wind power) for each turbine based on meteorological 
information and machine characteristics. They then utilize the 
power curves and available wind data for forecasting.   

2.2 Green Energy in Data Centers 
Green energy usage in a data center environment is a 
relatively new topic. Gmach et al. [2] augment a data center 
with PV and municipal solid waste based energy. However, 
since solid waste energy supply is constant over time, they do 
not address the problem of variability in renewable energy 
supply. Lee et al. [3] model an optimization problem which 
uses the market prices of brown and green energy to decide 
how much energy of each type should be bought in each 
interval. They do not make server level scheduling decisions 
based on the amount of green energy. 

Stewart and Shen [4] analyze the energy requirement 
distributions of different requests and how to integrate green 
energy to the system.  They state that the variable nature of 
green energy can be a problem, but do not propose solutions. 
Gmach et. al. [1] use wind and solar energy to cap the power 
usage of a data center environment. The paper addresses the 
problem of variability of green energy and overcomes this 
problem by adding extra energy storage.  Krioukov et al. [16] 
use renewable energy for execution of MapReduce type jobs. 
They schedule MapReduce tasks with available green energy, 
but terminate them when the scheduler realizes that there is 
not enough green energy in subsequent intervals. 

Our work, in contrast, uses prediction methods to estimate the 
amount of green energy in a given interval and utilizes that 
data to make decisions about scheduling policies of individual 
servers. We aim to increase the green energy usage efficiency 
by prediction as well as reduce the destructive impact of the 
variable nature of the green energy sources on batch job 
completion times. Additionally, unlike previous work, we 
include service jobs and batch jobs together in our model to 
obtain a more realistic system view, as data centers normally 
see both types of workloads. 

3. SOLAR AND WIND ENERGY 

PREDICTION 
The focus of current work on large-scale green energy 
prediction is on medium to long-range time horizons lasting 
from hours to days. As such, the techniques are highly 
complex, requiring intensive data acquisition and analysis 
from using SCADA units [19] for solar energy to entire data 
centers [22] for NWP wind prediction models. Our prediction 
interval needs to be only as long as the workloads we desire to 
schedule, which is on the order of tens of minutes (our 

predictor uses 30 min). We chose this interval based on run-
time experiments on the scalable, fault-tolerant Hadoop 
framework [8], which we use as our batch workload. 
Furthermore, as the response time constraints of services that 
run in data centers can be quite short (tens of ms), our job 
scheduler and predictor need to be fast.  As a result, we 
designed solar and wind energy prediction models of lower 
complexity and shorter time horizons. 

3.1 Solar Prediction Methodology 
We applied various time-series prediction algorithms 
described in the related work to the output data retrieved from 
a solar farm at the University of California, San Diego, [15]. 
While most solar prediction algorithms are accurate when 
weather conditions are stable, EWMA algorithms have 32.6% 
mean error in variable weather. The WCMA algorithm [20], 
when repurposed by us for larger solar installations (instead 
of the wireless sensor networks it was originally designed 
for), performed very well, with a mean error of 9.6% for 30 
min prediction window even in artificially-created worst-case 
scenarios. 

3.2 Wind Prediction Methodology 
We develop a novel, low-overhead predictor that utilizes 
readily available data that has been shown to strongly 
correlate with wind energy prediction [21]: wind speed and 
wind direction. Our algorithm produces weighted nearest-
neighbor (NN) tables to generate wind power curves using 
available wind speed and direction data at each 30-minute 
interval. Weighted tables allow the algorithm to adapt to 
seasonal changes by weighting recent results highly, while the 
power curves offer flexibility, allowing the algorithm to be 
used with different wind farms. The appropriate power curve 
table gets updated using the current interval’s observed wind 
velocity, direction, and output power as follows: 

Pnew (v, d) = α*Pobs (v, d, t) + (1-α)*Pold (v, d)        (1) 
 

here Pnew(v,d) is the new power curve table entry for a given 
wind velocity v and direction d, Pold(v,d) is the existing value 
for the same velocity and direction, and Pobs(v,d,t) is the 
observed value at time t. While α can vary from 0 to 1, we 
found most consistent results with α=0.75, which weights the 
model more heavily towards currently observed data. Future 
interval prediction uses a table lookup based on the predicted 
wind velocity and direction: 

Ppred (v, d, t+k) = P (v(t+k), d(t+k))                  (2) 
The algorithm has been tested against a wind farm installation 
over a year’s worth of power output data provided by the 
NREL, and the meteorological data provided by the National 
Climatic Data Center (NCDC). The results show a mean error 
of 17.2% for a 30-minute prediction interval, equaling or 
outperforming the time-series models described in [21], at 
much lower computational cost. 

4. GREEN ENERGY SCHEDULING 

AND DATA CENTER MODELING 
Our goal in this work is to evaluate the benefit of green 

energy prediction for increasing the data center job 
throughput while not sacrificing service jobs’ response time 
constraints. To accomplish this we designed both predictive 
and instantaneous green energy based schedulers and compare 
them to the baseline of using only brown energy. The 
scheduler uses two separate job arrival queues as shown in 
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Figure 1.  One queue is for web services that have response 
time requirements (e.g. 90th percentile should be less than 
150ms), and the other for batch jobs which are more 
concerned about throughput and job completion time. When a 
web services client request arrives, the controller allocates a 
server that has the smallest number of batch jobs running on it 
in order to reduce the interference effects between these two 
types of workloads. Additionally, we put a limit to the number 
of clients a host can serve to distribute the web-requests 
evenly among servers. This limit is determined by using 
current number of clients and total number of host machines. 
For simplicity, we assume that each server has at minimum 
one web services request queue, and one or more batch jobs 
slots to execute. Web services start execution whenever there 
are available computing resources (CPU and memory) to 
ensure their response time requirements are met whenever 
possible. Therefore, we guarantee that the system provides 
enough brown energy to maintain these service requests.  In 
this work we use Rubis as representative of web services [6]. 
Based on our measurements and [11] we model the 
interarrival time of Rubis requests generated by a client using 
a lognormal distribution.   

 

Figure 1: System architecture 

We use open source version of MapReduce, Hadoop [8], to 
represent batch jobs. Input data of any given job is split and 
processed by many map/reduce tasks distributed across a 
fixed number of map/reduce slots in a cluster as shown in 
Figure 1. If there are more tasks than the available slots, the 
tasks without slots are queued. If any task fails, the 
MapReduce scheduler starts a fresh copy the task. The arrival 
process of this type of jobs is modeled by a lognormal 
distribution, as demonstrated in [9]. The total number of 
servers given to a job depends on the energy availability & 
green energy scheduling algorithms.  At each time instance, 
power consumption of servers is estimated using a linear 
model based on CPU utilization as in [10]. The overall data 
center energy cost is calculated using aggregate server power 
scaled by the power utilization efficiency ratio (PUE) to 
account for the impact of other sources of inefficiencies (e.g. 
cooling costs). We use our data center test bed measured 
average PUE value of 1.26.  

Predictive green energy scheduler: Our green energy 
predictor uses a 30-min prediction interval, a duration that is 
longer than that of our run-time tests of MapReduce jobs to 
ensure enough energy is available to finish the tasks. The 
predictor provides the scheduler with an estimate of the next 
period’s average green energy availability at the beginning of 
each batch job allocation interval. It then computes the 
number of batch job slots that can be used for the given 
amount of energy in that interval. When computing the 
number of extra slots the scheduler uses the average 
power/slot information we got from our measurements (see 
next subsection). If this number is greater than the current 
number of available slots, the remaining extra slots are 
distributed to the active MapReduce cluster, so that they can 
run more tasks in parallel. However, if this number is smaller, 
then the scheduler deallocates some jobs. Jobs that run more 
concurrent tasks than their base requirement have their slots 
reduced first. The tasks running in deallocated slots are either 
immediately terminated or restarted with green energy later 
on (jobs using more than needed slots), or continue but use 
brown energy instead. This decision is made depending on the 
number of concurrent tasks in a job. The energy consumed to 
run the terminated jobs in the previous interval is wasted. In 
the results section, we quantify this cost of incorrect energy 
prediction by using the green energy usage efficiency metric.  
The main benefit of a predictor is that the number of 
deallocated slots for batch jobs can be dramatically reduced, 
and the number of available slots increased. 

Instantaneous green energy scheduler: We compare the 
impact of green energy prediction to the instantaneous use of 
green energy presented in [16]. To simplify evaluation we use 
the same algorithm as predictive scheduler, but with a 1min 
scheduling interval which reflects the instantaneous case well. 

4.1 Model validation using experimental 

testbed 
We developed a discrete event-based simulation platform for 
scheduling a mix of service and batch jobs in a data center 
consisting of hundreds of servers.  This enables us to evaluate 
the impact of using a combination of brown and green energy 
at scale. To ensure accuracy of our estimates, the parameters 
for our event-based simulator are obtained from 
measurements on Intel Nehalem [12] servers when running a 
mix of service (Rubis [6]) and batch workloads (MapReduce 
[7]) within Xen VMs. Rubis and MapReduce are run in 
separate VMs, with MapReduce run across 2 VMs, one 
utilizing 4 cores, and the other varying the number of cores 
occupied. Rubis is run with 9000 concurrent users. 

Table 1: Measured interference of MapReduce and Rubis 

# cores MapReduce 1-4 5 6 7 8 

Rubis QoS 0.0.47 0.08 0.1 0.4 0.93 

MapReduce Perf. 100% 94% 88% 83% 81% 

Table 1 shows the measurements we obtained by scheduling 
an increasing number of MapReduce tasks on the same 
machine with service requests. We report a measure of 
normalized response time as Quality of Service (QoS) ratio, 
which is calculated using 90th percentile response time over 
the expected response time (for Rubis it is 150ms). We see 
that even in the worst case, where we allocate the maximum 
number of available cores to MapReduce jobs, normalized 
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response time of Rubis, as measured by QoS ratio, is still less 
than 1. In addition, we see that the worst case performance 
impact on normalized MapReduce job completion times is 
maximum 20%. Mean measured service time of a single map 
or reduce task is around 10 minutes, though the maximum can 
be as high as 20 min, thus justifying our choice of 30min 
green energy prediction interval. 

Table 2: Verification of simulation outputs 

 Measured Simulated Error 

Avg. Power Consumption 246 W 251 W 3% 

Rubis QoS ratio 0.08 0.085 6% 

Avg. MapReduce Comp. Time 112 min 121 min 8% 

Given the measurements presented above, in our simulations 
we use 150ms as the target Rubis response time with 12ms 
service times for 1000 to 5000 clients representing different 
times in a day, 2min mean arrival time of MapReduce jobs [9] 
with average execution time of 10 min.  To ensure that in our 
simulations we have at most 10% performance impact on 
MapReduce tasks, we use 5 slots per server. We compare 
simulation results using this setup to actual measurements on 
the Nehalem server. Table 2 shows that the average error is 
well below 10% for all quantities of interest, with power 
estimates having only 3% average error, while performance 
for services has only 6% and MapReduce completion times 
are within 8%. 

5. RESULTS  
We use our discrete event-based simulation platform to 
schedule a mix of service (Rubis) and batch jobs 
(MapReduce) in typical data center container consisting of 
200 Intel Nehalem servers. The overall duration of simulation 
is 4.5 days. Simulations are repeated until we obtain a 
statistically stable average. 

Each server has a single web service queue that servers 
multiple clients. Incoming client requests are distributed over 
the servers evenly. The client arrival distribution is assumed 
to be exponential as in [23], while client requests are 
generated using a lognormal distribution with mean 100 ms 
and 15 ms as mean service time. MapReduce jobs arrive to 
the system with a mean of 2 min and each task has 10 min 
execution time on average. We use 5 MapReduce slots per 
host. Services QoS ratio in all of our simulations remains 
between 0.09 and 0.2, thus ensuring that web request response 
time requirements are never violated. The ratio gets closer to 
1 when the number of web services clients exceeds 10000. 
The average queue length for web requests is 0.8 for 1000 
clients and 5.5 for 5000 clients.  

We use a number of metrics reported in Table 3 to compare 
our predictive scheduler (Pred.) with the state of the art 
instantaneous green energy usage (Inst.) [16] when using only 
wind, only solar and combined two green energy sources.  We 

define GE Efficiency as the ratio of the green energy doing 
useful work versus the total green energy available: 

GEuseful_work / GEtot. Energy consumed by a task that is 

terminated before completion is not counted as a part of 

GEuseful_work. Green energy under-prediction is penalized by 
this metric. The percentage of jobs that are terminated as a 
result of the lack of green energy at the beginning of the 
scheduling interval, % incomplete jobs, is calculated relative 
to the overall number of jobs completed using green energy. 
This occurs when jobs launched with currently available 
green energy in a previous scheduling interval cannot be 
sustained due to the energy availability drop in the subsequent 
interval. Lastly, the efficiency of the system is in terms of 
green energy usage, GE Job Ratio,  is defined as the total 

amount of work done with green energy, JobsGE, over the 

total work done in the system, Jobstot: JobsGE/Jobstot. 

Figure 2: Average completion time of MapReduce tasks 

Table 3 shows that prediction improves green energy 
efficiency up to 3x relative to instantaneous energy. The main 
reason for this result is that the system has good quality 
information on green energy availability for a longer interval 
and hence can make better scheduling decisions. Therefore, 
less green energy is wasted and 5x fewer MapReduce tasks 
need to be terminated. Finally, our predictive scheduler 
increases the number of MapReduce tasks executed with 
green energy by 2x relative to the instantaneous approach as a 
result of more accurate energy provisioning. Figure 2 shows 
how the average completion time of MapReduce jobs changes 
over time as a function of the way green energy is used. The 
baseline case uses only brown energy to run a mix of services 
with just enough MapReduce jobs so that services response 
time constraints and performance requirements of MapReduce 
jobs (maximum 10% hit to completion times) are met. In this 
scenario, we create the MapReduce jobs at the same rate to 
highlight the green energy effect more clearly. Our green 
energy prediction scheduler decreases MapReduce task 
completion times on average by 20%. In contrast, 
instantaneous usage of green energy results in 12% higher 
average batch task completion times compared to prediction. 

An alternate way to compare using predicted vs. 
instantaneous green energy schedulers is to supplement with 
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Table 3: Comparison of instantaneous and predicted green energy with different alternative energy sources 

 Wind Energy Solar Energy Combined 

 Inst. Pred. Inst. Pred. Inst. Pred. 

GE Efficiency 30% ± 2.5% 90% ± 2% 60% ± 5 % 93% ± 2 % 72% ± 5 % 93% ± 3 % 

GE Job Ratio 35% ± 5 % 50% ± 5% 28% ± 4 % 45% ± 3% 40% ± 4 % 55% ± 5 % 

% incomplete jobs 10% ± 3.3 % 1.3% ± 0.4 % 8.6% ± 2.5 % 2.4% ± 0.5 % 12% ± 2.5 % 3% ± 0.5 % 
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brown energy whenever there is not enough green energy to 
complete batch jobs.  In this way we ensure that all service 
jobs meet their response time requirements and all batch jobs 
complete, so none are terminated. The first column of Table 4 
shows the amount of brown energy needed to run all the tasks 
in the absence of green energy. When we use green energy 
instantaneously and do not terminate any tasks when there is 
not enough green energy available, we need extra 4.6 kWh of 
brown energy per data center container, but if we use our 
predictor, the extra brown energy needed is decreased by 
more than 7x to 0.64 kWh. 

Table 4: Brown Energy for Inst. vs. Pred. Energy 

Total BE w/o GE Add. BE for Inst. Add. BE for Pred. 

240 kWh 4.6 kWh 0.64 kWh 

6. CONCLUSIONS 
As the cost of brown energy is becoming a critical bottleneck 
in data center environments, the need for alternative energy 
sources is growing. In this paper we present a novel green 
energy predictor, along with a data center scheduling policy 
which uses prediction information to obtain better 
performance for batch jobs without significantly affecting the 
performance of latency sensitive web requests. We use a 
simulation platform to compare our predictive policy with 
instantaneous use of green energy. Our simulation platform 
has been verified by measurements on real systems, with 
maximum 8% error across all relevant metrics. Our results 
show that prediction leads to 3x better green energy usage and 
reduces the number of terminated tasks up to 7.7x compared 
to instantaneous green energy usage. The response time 
requirements of web requests stay well below the 90th%ile 
during all the experiments. 
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