
The Swiss Army Smartphone: Cloud-Based Delivery
of USB Services

Adiseshu Hari, Manoj Jaitly, Yuh-Jye Chang
Alcatel-Lucent Bell Laboratories

Murray Hill, NJ 07974, USA
{Adiseshu.Hari, Manoj.Jaitly, Yuh-Jye.Chang}@alcatel-lucent.com

Andrea Francini
Alcatel-Lucent Bell Laboratories
Mooresville, NC 28115, USA

Andrea.Francini@alcatel-lucent.com

ABSTRACT
A smartphone can be configured to look like any Universal

Serial Bus (USB) peripheral and can be managed remotely
through its wireless data connection. By virtue of these
features, smartphones are ideal vehicles for the delivery of a
variety of brand-new, USB-powered services that support the
management and troubleshooting of mobile laptops. We
provide examples of such USB services and describe a
general architecture for their implementation. The services
are easy to deploy, because they can be extended to remote
laptops without prior installation of new software, and well-
suited for delivery through virtualization in a cloud
infrastructure. While our examples target mostly the
enterprise, USB services, especially virtualized ones, can
easily be tailored to suit a broad set of consumer applications.

Categories and Subject Descriptors
B.4.3 [Interconnections (Subsystems)]: Interfaces.
K.6.2 [Installation Management]: Computing
equipment management.

General Terms
Design, Management, Performance.

1. INTRODUCTION
Computers are standard equipment for large portions

of today’s workforce. While greatly enhancing
productivity, they come with a heavy maintenance
burden. Software and hardware components can suffer
myriad failures, from program malfunctions to virus
infections, from hard-disk corruption to boot-up issues.
For traveling workers, network connectivity may be
sporadic and laptop thefts are not unusual. In all cases
where the computer has issues, it is vital for the user to
have it checked and serviced without delay. This is a
problem for remote workers, who may not have
immediate access to a corporate service center.

Fortunately, most computer users have access to a
mobile phone, which ever more often is a data-enabled
smartphone with Internet connectivity. Can this

increasingly ubiquitous device enable new maintenance
and troubleshooting schemes where computers no
longer have to be taken to service centers?

This paper describes a solution that morphs the
smartphone into a variety of remotely-controlled
Universal Serial Bus (USB) peripherals, creating the
mobile handheld equivalent of a Swiss Army knife. The
peripherals deliver services that enclose an off-site
computer within a secure IT infrastructure with
immediate access to advanced troubleshooting,
management, and remediation applications.

The delivery of USB services via smartphones results
from our integration of four key enablers. First, all
personal computers today support USB peripherals.
USB devices are available in a variety of device classes
that support a broad range of functions, such as
networking, storage, video, smart card, keyboard, and
mouse. Since current versions of operating systems like
Linux and Windows support drivers per USB device
class, a new USB device that falls within one of the
standard classes does not even require a dedicated
driver. For drivers that are not already built into the
host operating system, the wide availability and support
of USB driver frameworks in current operating systems
make their custom development a trivial task.

Second, all smartphones are now capable of acting as
USB peripherals. While the type of USB connector
may vary across smartphones, each type comes with a
USB cable that universally connects it to a computer.

Third, virtually all smartphones can act as any USB
peripheral. In the smartphone, the central processing
unit (CPU), the memory, the flash storage controller,
and the USB device controller are all integrated in one
system-on-a-chip package. The CPU can emulate any
type of USB peripheral with software that can be
controlled both locally (directly on the phone) and
remotely (by an external entity deep in the network).

Fourth, smartphones are continuously attached to a
wireless wide area network (WWAN) when powered
on, and always ready to establish Internet connectivity
through the same WWAN or a surrounding wireless
local area network (WLAN) upon request. They are
therefore amenable to remote access from a networked
management station, provided that the management
station can establish Internet Protocol (IP) connectivity
to the smartphone. Contacting a smartphone over the

1

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
MobiHeld '11, October 23, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0980-6/11/10 ... $10.00.

Internet is not possible when the smartphone is not
connected to the Internet or its IP address is not known
to the management station. However, the management
station can always reach a powered-on smartphone that
is without Internet connectivity using a text message
delivered through the short message service (SMS)
component of the WWAN infrastructure. A special
SMS message can request the smartphone to initiate the
IP connection to the management station [6].

Taking advantage of all four properties, we can attach
a smartphone to a computer and make it behave as a
USB peripheral, and then, whenever a smartphone
interface can support IP connectivity, we can control
the peripheral remotely. This provides the foundation
for a range of brand-new, zero-touch, always-on
services. Each service is tied to one of the USB
peripherals found in this “Swiss-Army smartphone”:
the console peripheral supports remote management
and troubleshooting of the computer; the storage
peripheral supports network storage and backup,
managed boot-up, and enhanced data-delivery
functions; the smart-card peripheral supports login
revocation and other managed security functions. The
range of possible applications for smartphone-enabled
USB services is broad in the enterprise IT context and
can become much broader in the consumer IT space.

Active sessions of USB services bring tremendous
value to the enterprise, but are typically sporadic and
short-lived. The installation and operation costs of
infrastructure equipment that in rare occasions may be
required to sustain relatively large volumes of users and
data traffic, but most of the time stays idle, could easily
dissuade enterprises from deploying such services. The
virtualization of the management station in a cloud
environment, offered on a pay-per-use basis by cloud
service providers, eliminates all the economic
drawbacks of private deployments and expands the set
of players that can profit from USB services.

The rest of the paper is organized as follows. In
Section 2 we review the USB technology. In Section 3
we outline our reference connectivity framework for
the computer, the smartphone, and the virtualized
management station. In Section 4 we describe a
representative set of USB services. In Section 5 we
discuss the benefits of our solution over possible
alternatives. Finally, in Section 6 we summarize our
contributions.
2. USB OVERVIEW

USB [7] is by far the most popular technology for
connecting peripherals to computers. All computers and
phones of recent release support it.

The USB communication infrastructure is organized
as a tree with the host controller as the root and the
USB devices as the intermediate nodes and leaves. Data
transfers occur over logical pipes that connect the host

controller with respective endpoints in the USB
devices. The host controller initiates all transfers, by
polling the devices for data. Within a USB device, the
endpoints are grouped into interfaces. Each interface
delivers a single function, such as networking or
storage. Every USB device carries identifiers for the
interface types that it supports. Many interfaces are
now standardized as USB device classes: a USB device
that carries the identifier of a standardized class does
not need a special device driver to be installed in the
host software in order to function correctly, as long as
the host operating system (OS) supports the generic
driver for that device class.

The following standardized USB device classes are
most common: USB Mass Storage Class, for flash
drives, digital cameras, audio players, external drives,
and memory card readers; USB Communications
Device Class (CDC), for communications peripherals
like modems, faxes, serial interfaces, and network
interfaces; USB Human Interface Device (HID) Class,
for peripherals like keyboard and mouse; USB Audio
Class, for speakers and microphones; USB Video
Class, for webcams; USB Smart Card Class; and USB
Printer Class. We focus on USB services that leverage
the USB Mass Storage Class and the USB CDC.

A single USB device can support multiple interfaces,
which appear to the host controller as separate logical
devices. A USB device that simultaneously exposes
multiple interfaces is called a composite device. While
support for composite devices has started appearing in
computer operating systems like Linux and Microsoft
Windows, it is poorly provided in smartphones and
completely absent in pre-boot environments like the
basic input/output system (BIOS) of computers.
Consistently with the lack of pervasive support for
composite USB devices in smartphones of current
generation, this paper focuses on the use of
smartphones as single-interface USB devices that
deliver a single USB functionality at a time.
3. USB SERVICES ARCHITECTURE

In this section we describe our reference architecture
for the implementation of USB services in the
enterprise IT environment. The architecture can be
easily extended to support consumer IT applications.
3.1 Reference Architecture

The platform that delivers USB services, shown in
Figure 2, consists of three components: the computer,
the smartphone, and the service management center
(SMC). The SMC is virtualized in a cloud service
provider network, where multiple virtual machine
(VM) instances can be allocated on demand, and
constitutes the single point of entry for management of
all the smartphones that support USB services in the
enterprise. The web interface of the SMC includes

2

commands for provisioning and tracking service-
enabled smartphones. Each smartphone connects to the
SMC via a secure IP medium, most commonly an IPsec
[5], SSH [8], or TLS/SSL [2] tunnel. Encrypted tunnels
also protect the connections between the SMC and the
administrator consoles within the enterprise network.

The service software that runs on the smartphone
includes a Management Agent (MA) and a User Agent
(UA). The MA receives from the SMC the commands
that select and configure the specific USB device class
stack that supports each service (USB device classes
can be switched at run-time, with no need to restart the
smartphone). The MA also oversees the encryption
parameters that protect all data exchanges with the
SMC and the computer that pertain to USB services
with enhanced security features. The UA exposes a
graphical user interface (GUI) that provides the
smartphone user with direct access to some of the
smartphone controls, such as the USB interface selector
and the user authentication interface.

Figure 2. Architecture for USB services.

All USB-service transactions between the smartphone

and the computer must occur over a USB cable. This
condition does not limit the usability of the services:
USB cables are commonly available in small retractable
formats and do not restrict the operation of the
computer in stationary work settings. Of course, the
USB cable can always be unplugged as soon as a
service-delivery session reaches completion.
3.2 Implementation of the Architecture

In this section we describe our implementation of the
reference architecture for USB services over the
Android platform [1] for smartphones.
3.2.1 Service Management Center

The SMC is the point of entry for administration of
the USB services. It includes a web-based GUI for
provisioning, management, and troubleshooting of user
profiles and smartphones. It also provides VPN
termination facilities (IPsec or SSL/TLS) for the secure
connections to the smartphones.

While its instantiation in a dedicated server within the
enterprise is always possible, the SMC is particularly
well suited for implementation as a virtual server in the
cloud. A provider of cloud services can allocate SMC
instances on demand for different enterprise customers,
adjusting the number of SMC instances to the widely
fluctuating load of connected remote users. This
arrangement benefits the cloud service provider with an
important expansion of the product portfolio for the
enterprise market. On the other hand, the enterprise
avoids the addition of new physical components to its
IT infrastructure, eliminating the upfront capital
expenses for the purchase and the runtime expenses for
real estate, power, and maintenance. The flexibility of
the cloud model also eliminates the extra cost of
provisioning the added infrastructure for peak traffic
conditions. We can conclude that the virtualization of
the SMC rakes in all the advantages of cloud
computing without apparent drawbacks.
3.2.2 Smartphone

We use the G1 (or HTC Dream) smartphone with
Android OS [1] as the platform for installation of the
MA and UA software modules. Android is an excellent
match for most of our needs, because it is open-source
and its kernel is Linux-based. However, Android’s
preferred support for Java applications rather than C
applications (it uses a non-standard C library for its
core user space components) collides with our plan to
reuse C code from prior projects for implementation of
the VPN and MA functions. We overcome this obstacle
by creating a chroot environment that runs a complete
regular Linux distribution, cross-compiled for the
Advanced RISC Machine (ARM) Instruction Set
Architecture (ISA) of the Android smartphone (since
we can replicate the same approach over any other
smartphone with Android OS and ARM ISA, our
solution is not strictly tied to the G1 model). The chroot
environment is large enough (750 MB in our
implementation, at a time when 64 GB Micro SD cards
have started hitting the market) to contain all the
libraries that are needed for running C applications,
such as the standard GNU libc.

The cross-compilation of our application C code base
for the ARM ISA and its installation in a chroot
environment adds to the Android platform a standard
Linux user space with no impact on its native
capabilities. We implement the UA as an Android
application outside the chroot environment and install
the rest of the software, including the MA, in the chroot
environment. Since chroot isolates the file system but
not the kernel nor the network, the UA can still
communicate with the MA using network sockets.

We provide the smartphone with the needed USB
device classes by porting the respective modules from
the regular Linux kernel into the Android kernel, where

3

some classes, such as the USB Mass Storage Class, are
natively missing. We do not modify any of the existing
USB gadget modules of Android. On the networking
side, the smartphone runs a DHCP server and uses the
iptables framework of Linux for network address
translation (NAT). For VPN connectivity to the SMC,
we install a commercial IPsec implementation for
Linux, consisting of a kernel IPsec driver and a user-
space IKE utility controlled by the MA.

We partition the storage space in the Secure Digital
(SD) card of the smartphone to create static allocations
for the chroot Linux environment, for the encryption
keys, and for the data to be stored when the smartphone
operates as a USB Mass Storage Class device. We
compile the iptables, USB, and VPN software using
open source code for the G1 Android smartphone that
is publicly available.
3.2.3 Computer

Our architecture does not require the installation of
service-specific software in the computer. Drivers for
the USB device classes that implement the services are
generally present by default in current OS releases. We
emphasize that the absence of software installation
requirements for the computer is a major differentiator
for our USB services, since it makes their deployment
possible without involvement of the end user.
4. EXAMPLES OF USB SERVICES

We describe here a representative selection of USB
services that rely on a variety of USB device types.
4.1 USB Internet Tethering

Tethering is the extension of the smartphone’s
WWAN connection to an attached computer. It makes
Internet access possible when more typical media for
network connectivity, such as Ethernet or WiFi, are not
available to the computer (e.g., while traveling).

In a conventional tethering service the smartphone
exposes a Bluetooth or USB modem interface, which
the computer uses for dial-up networking (the WiFi
option is also available, but flawed by much higher
power consumption). The USB modem interface
method connects the computer directly with the
Internet, bypassing the smartphone. This configuration
interferes with the synchronization of applications
between the computer and the smartphone and prevents
computer access to any files stored on the smartphone.

In our USB Internet tethering service, the MA
configures the smartphone to work as a router and to
expose a USB Ethernet interface (USB CDC) to the
computer, so that the computer can communicate with
both the Internet and the smartphone. The iptables
framework provides NAT functionality, which enables
IP masquerading. The dnsmasq utility issues the private
IP address to the computer (DHCP server functionality)
and relays the DNS settings from the WWAN base

station. With lighttpd, a lightweight web server, the
computer can access files on the smartphone through a
web-based interface. By activation of the SSH server
daemon we allow the computer to log into the
smartphone and transfer files to and from the
smartphone using an encrypted interface.
4.2 USB VPN Tethering

Internet tethering offers connectivity to the outside
world, but enterprise users also need to access their
corporate network through a VPN connection, secured
by user authentication and data encryption. IPsec [5] is
typically the VPN technology of choice. The Point-to-
Point Tunneling Protocol (PPTP) [3] and SSH [8] are
far less popular alternatives. TLS/SSL tunnels [2] are
gaining popularity, mostly because they can be opened
with a web browser and do not require the installation
and configuration of a software client, but they only
support web-based applications.

In solutions for remote enterprise access that adopt
technologies other than TLS/SSL, a VPN client is
included in the pre-imaged computer of the user. With
this approach, remote access is not possible if the pre-
imaged computer is broken or not within reach. Other
computers cannot be used because they lack the
necessary VPN client with proper configuration.

Just like the USB Internet tethering service, our USB
VPN tethering service allows the user to connect any
computer to the smartphone. However, with VPN
tethering the computer connects not to the general
Internet, but to the VPN gateway of the enterprise,
using a VPN client installed in the smartphone that
offloads authentication and encryption from the client-
free computer.

The user invokes the VPN tethering option from the
UA on the smartphone and provides the necessary
authentication credentials to establish the VPN tunnel
between the smartphone and the enterprise. When the
user connects the computer to the smartphone using the
USB cable, the computer perceives the smartphone as a
USB Ethernet device. The dnsmasq utility on the
smartphone relays to the computer its enterprise IP
address (obtained from the VPN gateway at the edge of
the enterprise network) along with other network
parameters like the identifiers of the DNS and WINS
servers. Since the smartphone also acts as the default
router for the computer, the computer directs all of its
plain-text traffic to the smartphone, where it is
encrypted and dispatched over the access connection
that currently serves the smartphone (whether WWAN,
WLAN, or Bluetooth).

Opening VPN access to a generic computer could in
theory increase the exposure of the enterprise network
to threats associated with dual connectivity, where the
computer relays a rogue connection from one of its
other network interfaces, and with corrupted files

4

residing in the computer’s hard disk. To avoid dual
connectivity, the MA can force all network traffic of
the computer through the smartphone when VPN
tethering is enabled. Disk scan software installed in the
smartphone and updated irrespective of computer
attachment can exclude computers with unsafe software
from the enterprise perimeter.
4.3 USB Smart Card

Compared to a traditional logon procedure based on
username and password, a smart card increases the
robustness of the user authentication process for remote
network access by joining the requirement for
“something the user knows” (the personal identification
number, or PIN) with the requirement for “something
the user has” (the smart card). The cryptographic
certificates stored in the smart card are necessary not
only for user logon after the host OS is loaded, but also
to enable the execution of the boot-up procedure.
Unfortunately, smart card authentication for user logon
is by itself not sufficient to secure a computer, since the
computer hard disk can always be read by attaching it
to another computer. Foolproof security requires using
smart card authentication not only for booting but also
for full disk encryption.

The USB smart card service configures the
smartphone as a smart card with network connectivity.
The user must connect the smartphone to the computer
via the USB cable in order for the computer to boot up
and for the logon procedure to move on. The
smartphone is also the repository of the cryptographic
keys for encryption of the computer’s hard disk. An
implementation that complies with smart card standards
can interoperate with different full disk encryption
solutions, starting with the pre-boot authentication
procedure.

If the computer is stolen without the smart card, the
hard disk contents cannot be read. If the theft includes
the smartphone, the IT administrator can remotely
revoke the encryption keys and the authentication
certificates the first time the smartphone attaches to a
network again, blocking access to the hard disk. Still,
the hard disk contents are not lost forever, because the
administrator can save the disk encryption keys before
revoking them, and restore them in the eventuality that
the hard disk is recovered. This is true even if the
original smartphone is lost, because the same keys can
be installed in a different smartphone. Note that
different regulations may apply to the duplication and
remote storage of cryptographic keys depending on
their use. Typically, the duplication of encryption keys
is permitted but the duplication of authentication keys
is not.

For implementation of the USB smart card service we
choose the USB CDC Ethernet device class instead of
the more obvious USB Smart Card class. This way the

smart card can coexist with the VPN tethering service
for remote enterprise access. Also, the USB Smart Card
class only supports card readers. Instead, the enhanced
computer protection enabled by our service requires the
entire smart card, with keys and certificates, to be
instantiated in the smartphone. The end result is a smart
card that is remotely controlled by the IT administrator,
who can install and remove encryption keys and
certificates via the network.
4.4 USB Serial Console

To troubleshoot issues on a computer, a technician
needs to log into it. If an issue disrupts network
connectivity, the technician cannot troubleshoot the
computer remotely.

Many computers and most network equipment
support serial-console access, which does not require a
functional networking stack and a healthy network
infrastructure. In setups for remote serial-console
access, the serial console is connected to a serial
console server, which in turn is accessed remotely
through telnet or SSH sessions. However, these setups
are ineffective when the network problems that make
the computer or network equipment unreachable also
prevent access to the serial console server.

The ideal solution provides out-of-band access to the
serial console independently of the operational state of
the main network, and can be found in a smartphone
that acts as a serial console. The USB CDC ACM
specifies a USB serial port with full support for all
modem control signals. The Linux kernel includes a
USB gadget serial module, which implements a subset
of the USB CDC ACM class. The USB serial module
can also be configured as a raw serial port, with no
modem control signals: this mode is sufficient for
operation of a serial console for Linux systems,
whereas the ACM mode is needed for serial port access
to Microsoft Windows systems.

When the end user selects the managed USB serial
console service from the UA, the smartphone loads the
USB serial module from the Linux kernel. When the
smartphone is connected through a USB cable, it
appears to the computer or network equipment as a
serial console terminal. Once the smartphone is
available as a serial console terminal, the enterprise IT
administrator can log into the console over the
smartphone’s data connection. If the managed USB
VPN tethering service is also implemented, the login
session is encrypted. The result is an out-of-band secure
connection to off-site equipment that is always ready
for establishment, even at times when regular network
connectivity is not available.
4.5 USB Mass Storage

When configured as a USB Mass Storage device, the
smartphone acts as a flash disk drive attached to the

5

computer. In our implementation, we create a partition
on the SD card of the smartphone and map it to the
USB Mass Storage device. The MA has the ability to
move data files in both directions between the mapped
partition and the network. As a result, the smartphone
appears to the computer as a virtual network drive in
the enterprise network.

The IT organization of the enterprise can use the
mapped partition on the smartphone to push/pull
content to/from the computer even at times when the
computer is not powered on or connected to the
smartphone. Thanks to enhanced data transfer
primitives (described in greater detail in [4]), the data
exchanges between the computer and the enterprise
servers, which normally require direct IP connectivity
between the two endpoints, can be staged in two time-
shifted steps. In one step, the computer and the
smartphone exchange the content irrespective of the
availability of Internet connectivity. In the other step,
the smartphone and the enterprise server exchange the
content whether or not the computer is powered on and
attached to the smartphone.

The main outcome of managed USB Mass Storage
services is the extended opportunity offered to critical
data content like software patches and drive backups to
reach their destinations within short time of their
generation. Such time gap reduction is extremely
beneficial to the IT security of the enterprise [4], [6].
5. BENEFITS OVER ALTERNATIVES

In existing applications, smartphones act either as
USB Mass Storage devices, for audio, video, and
picture files, or as USB CDC ACM Modem devices,
for conventional tethering. It is rare for a smartphone to
support other USB device classes and expose a broad
variety of networked peripherals.

WiFi or Bluetooth could be used instead of USB to
connect a virtual peripheral in the smartphone to the
computer, but they are not as ubiquitous as USB in
computers (especially desktops and rack-mounted) and
smartphones. They also present a number of important
drawbacks. For WiFi connectivity, both the computer
and the smartphone must connect to the same network,
which means that there must be a WiFi hotspot nearby
that both can join. It is possible to create an ad-hoc
network between a laptop and a phone, but this requires
extra configuration steps. Bluetooth is capable of ad-
hoc networking, but also at the expense of extra
configuration steps. Even neglecting the configuration
hurdle, the power issue remains critical. Turning on the
Bluetooth interface increases the power consumption of
the smartphone; turning on the WiFi interface increases
it even more. This limits the uptime for the smartphone
when using either interface. In addition, both Bluetooth
and WiFi increase the vulnerability of the enterprise by

expanding the set of channels over which the laptop
and the smartphone can be attacked. Finally, computers
do not support the two technologies at boot time,
confining their use to post-boot times only. USB does
not suffer from any of these limitations.
6. CONCLUSIONS

We have described examples of new IT services
enabled by the Swiss-Army smartphone, a conventional
handheld empowered by the versatility of the standard
USB device classes. The services add functionality to a
computer without requiring the installation of new
software and can be managed remotely through the
wireless interfaces of the smartphone. They bring
convenience to end users and important cost reductions
to IT organizations, especially in enterprises of small
and medium size where a substantial fraction of the
overall workforce is sparsely distributed over wide
geographical areas. Further savings are enabled by the
virtualization in a cloud environment of the service
management center that provides administrative access
and secure connectivity to the smartphones. We
underscore that our USB services do not rely on
specific assumptions regarding the nature and features
of the underlying enterprise IT infrastructure and are
therefore straightforward to integrate in existing IT
solutions. Overall, the ability to instantiate a virtual
USB peripheral on a smartphone and control it from a
remote location can spawn a large set of creative uses,
of which we have only started scratching the surface.
7. REFERENCES
[1] Android. <http://www.android.com>.
[2] Dierks, T. and Rescorla, E. The Transport Layer

Security (TLS) Protocol Version 1.2. IETF RFC
5246. August 2008.
<http://www.ietf.org/rfc/rfc5246.txt>.

[3] Hamzeh, K., et al. Point-to-Point Tunneling
Protocol. IETF RFC 2637. July 1999.
<http://www.ietf.org/rfc/rfc2637.txt>.

[4] Hari, A., et al. Energy-Efficient Data Transfer
Primitives for Laptops Using Mobile Handhelds.
Proceedings of ACM MobiHeld 2010 (New Delhi,
India, Aug. 2010).

[5] Kent, S. and Seo, K. Security Architecture for the
Internet Protocol. IETF RFC 4301, December
2005, <http://www.ietf.org/rfc/rfc4301.txt>.

[6] Stiliadis, D., et al. Evros: A Service-Delivery
Platform for Extending Security Coverage and IT
Reach. Bell Labs Tech. J., 12, 3 (Sep. 2007).

[7] Universal Serial Bus. <http://www.usb.org>.
[8] Ylonen, T. and Lonvick, C. The Secure Shell

(SSH) Connection Protocol. IETF RFC 4254. Jan.
2006. <http://www.ietf.org/rfc/rfc4254.txt>.

6

