
Debugging in the (Very) Large:
Ten Years of

Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann,
Steve Greenberg, Gabriel Aul, Vince Orgovan,
Greg Nichols, David Grant, Gretchen Loihle,

and Galen Hunt

Microsoft Corporation

1

http://winqual.microsoft.com

http://winqual.microsoft.com/

A Revelation

• Software has bugs.

• Even shipping software.

• Even Microsoft’s shipping software.

• Oh, and so does hardware

(but we’ll come back to that point later...)

2

Two Definitions

• Bug: a flaw in program logic

#define MYVAR *(int*)random()
...
MYVAR = 5;

• Error: a failure in execution caused by a bug
– Run it 5,000 times, you’ll get ~ 5000 errors.

 One bug may cause many errors.

3

The Challenge

• Microsoft ships software to 1 billion users,

– How do we find out when things go wrong?

• We want to

– fix bugs regardless of source

• application or OS

• software, hardware, or malware

– prioritize bugs that affect the most users

– generalize the solution to be used by any programmer

4

Reported Bugs

Error Reporting Trigger

Kernel Crashes Crash dump found in page file on boot.

Application Crashes Unhandled process exception.

Application Hangs Failure to process user input for 5 seconds.

Service Hangs Service thread times out.

Installation Failures OS or application installation fails.

App. Compat. Issues Program calls deprecated API.

Custom Errors Program calls WER APIs to report error.

UI Delays Timer assert takes longer than expected.

Invariant Violations Ship assert in code fails.

5

Windows Error Reporting (WER)

6

WER by the Numbers

billions Error reports collected per year (App,OS,HW)

1 billion Clients

100 million Reports /day processing capacity*

17 million Programs with error reports in WER

many 1000s Bugs fixed

over 700 Companies using WER

200 TB of Storage

60 Servers

10 Years of use

2 Servers to record every error received

1 # of programmers needed to access WER data

7

Outline

Introduction

 How do we process billions of error reports?

 Experiences fixing bugs from

 Software

 Hardware

Malware

 Conclusion

8

Debugging in the Small…

9

Technicians
reports “top

ten” issues to
programmers

In the Large without WER…

10

Support
technician

tries to
diagnose error

User calls
technical
support

The Human Bottleneck

• Can’t hire enough technicians

• Data is inaccurate

• Hard to get additional data

• No “global” baseline

• Useless for heisenbugs

• Need to remove humans

11

Goal: Fix the Data Collection Problem

• Allow one service to record

–every error (application, OS, and hardware)

–on every Windows system

–worldwide.

• Corollary:
 That which we can measure, we can fix…

12

An Outlook Plug-in Example

plugin.dll:

#define MYVAR *(int*)random()
...
void foo(int i, int j)
{

if (i & 1)
memcpy(&MYVAR, j, 4);

else
...

}

13

Debugging in the Large with WER…

14

!analyze

5 17 23,450,649

Minidump

!analyze

• Engine for WER bucketing heuristics

• Extension to the Debugging Tools for Windows

– input is a minidump, output is bucket ID

– runs on WER servers (and programmers desktops)

– http://www.microsoft.com/whdc/devtools

• 500 heuristics

– grows ~ 1 heuristic/week

15

http://www.microsoft.com/whdc/devtools

To Recap and Elaborate…

• What I told you:
– client automatically collects a minidump
– sends minidump to servers
– !analyze buckets the error with similar reports
– increments the bucket count
– programmers prioritize buckets with highest count

• Actually…
– only upload first few hits on a bucket, others just inc.
– programmers request additional data as needed

16

2-Phase Bucketing Strategy

• Labeling (on client): bucketed by failure point

outlook.exe,plugin.dll,v1.0.2305,0x23f5
{program name},{binary},{version},{pc offset}

• Classifying (on servers):
re-bucketed toward root cause by !analyze

– consolidate version and replace offset with symbol
outlook.exe,plugin.dll,memcpy

– find caller of memcpy (because it isn’t buggy)
outlook.exe,plugin.dll,foo

– etc.

• Paper contains much more detail on bucketing…

17

Bucketing Mostly Works

• One bug can hit multiple buckets
– up to 40% of error reports

memcpy(&MYVAR, j, 4);
• one bucket when &MYVAR isn’t mapped
• many others when &MYVAR is in a data section

– extra server load
– duplicate buckets must be hand triaged

• Multiple bugs can hit one bucket
– up to 4% of error reports
– harder to isolate each bug

 Solution: scale is our friend

18

Outline

Introduction

 How do you process billions of error reports?

 Experiences fixing

 Software

 Hardware

Malware

 Conclusion

19

Top 20 Buckets for MS Word 2010

20

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
e

la
ti

ve
 h

it
 c

o
u

n
t 3-week internal

deployment
to 9,000 users.

 Just 20 buckets account for 50% of all errors

Fixing a small # of bugs will help many users

Bucket #:

C
D

F

Fixing bugs in software

• First use found >=5-year old heisenbugs in Windows

• Windows Vista team fixed 5,000 bugs in beta

• Anti-Virus vendor fixed top 20 buckets and
dropped from 7.6% to 3.6% of all kernel crashes

• Office 2010 team fixed 22% of reports in 3 weeks

• And you can fix yours…

21

Hardware: Processor Bug

22

0%

20%

40%

60%

80%

100%

-9 -6 -3 0 3 6 9 12 15 18

R
e

p
o

rt
s

as
 %

 o
f

P
e

ak

Day #:

WER helped fix hardware error

Manufacturer could have caught this earlier w/ WER

Other Hardware Bugs

- SMBIOS
- memory overrun in resume-from-sleep

- Motherboard USB controller
- only implemented 31 of 32 DMA address bits

- Lots of information about failures due to
- overclocking

- hard disk controller resets

- substandard memory

23

Renos Malware

24

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

10-Feb-07 24-Feb-07 10-Mar-07

R
e

p
o

rt
s

p
e

r
D

ay

Early detection w/o user action (renos, blaster, slammer, etc.)

WER scales to handle global events

Other Things in the Paper

• Bucketing details (Sec. 3)

• Statistics-based debugging (Sec. 4)

• Progressive data collection (Secs. 2.2 & 5.4)

• Service implementation (Sec. 5)

• WER experiences (Sec. 6)

• OS Changes (Sec. 7)

• Related work (Sec. 8)

25

Conclusion

• Windows Error Reporting (WER)
– the first post-mortem reporting system with automatic

diagnosis

– the largest client-server system in the world (by installs)

– helped 700 companies fix 1000s of bugs and billions of errors

– fundamentally changed SW development at MS

• WER works because bucketing mostly works.

http://winqual.microsoft.com

26

“WER forced us to stop
making *things+ up.”

http://winqual.microsoft.com/

