Debugging in the (Very) Large: Ten Years of Implementation and Experience

Kirk Glerum, Kinshuman Kinshumann, Steve Greenberg, Gabriel Aul, Vince Orgovan, Greg Nichols, David Grant, Gretchen Loihle, and Galen Hunt

Microsoft Corporation

http://winqual.microsoft.com

A Revelation

- Software has bugs.
- Even shipping software.

• Even Microsoft's shipping software.

 Oh, and so does hardware (but we'll come back to that point later...)

Two Definitions

• Bug: a **flaw** in program logic

```
#define MYVAR *(int*)random()
...
MYVAR = 5;
```

- Error: a failure in execution caused by a bug
 - Run it 5,000 times, you'll get ~ 5000 errors.
- ☐ One bug may cause <u>many</u> errors.

The Challenge

- Microsoft ships software to 1 billion users,
 - How do we find out when things go wrong?

- We want to
 - fix bugs regardless of source
 - application or OS
 - software, hardware, or malware
 - prioritize bugs that affect the most users
 - generalize the solution to be used by any programmer

Reported Bugs

Error	Reporting Trigger
Kernel Crashes	Crash dump found in page file on boot.
Application Crashes	Unhandled process exception.
Application Hangs	Failure to process user input for 5 seconds.
Service Hangs	Service thread times out.
Installation Failures	OS or application installation fails.
App. Compat. Issues	Program calls deprecated API.
Custom Errors	Program calls WER APIs to report error.
UI Delays	Timer assert takes longer than expected.
Invariant Violations	Ship assert in code fails.

Windows Error Reporting (WER)

WER by the Numbers

billions	Error reports collected per year (App,OS,HW)
1 billion	Clients
100 million	Reports /day processing capacity*
17 million	Programs with error reports in WER
many 1000s	Bugs fixed
over 700	Companies using WER
200	TB of Storage
60	Servers
10	Years of use
2	Servers to record every error received
1	# of programmers needed to access WER data

Outline

✓ Introduction
 ☐ How do we process billions of error reports?
 ☐ Experiences fixing bugs from
 ☐ Software
 ☐ Hardware
 ☐ Malware

☐ Conclusion

Debugging in the Small...

In the Large without WER...

The Human Bottleneck

- Can't hire enough technicians
- Data is inaccurate
- Hard to get additional data
- No "global" baseline
- Useless for heisenbugs
- Need to remove humans

Goal: Fix the Data Collection Problem

- Allow one service to record
 - every error (application, OS, and hardware)
 - -on every Windows system
 - -worldwide.

- Corollary:
 - ☐ That which we can measure, we can fix...

An Outlook Plug-in Example

plugin.dll:

```
#define MYVAR *(int*)random()
...
void foo(int i, int j)
{
    if (i & 1)
        memcpy(&MYVAR, j, 4);
    else
    ...
}
```

Debugging in the Large with WER...

!analyze

- Engine for WER bucketing heuristics
- Extension to the *Debugging Tools for Windows*
 - input is a minidump, output is bucket ID
 - runs on WER servers (and programmers desktops)
 - http://www.microsoft.com/whdc/devtools

- 500 heuristics
 - grows ~ 1 heuristic/week

To Recap and Elaborate...

- What I told you:
 - client automatically collects a minidump
 - sends minidump to servers
 - !analyze buckets the error with similar reports
 - increments the bucket count
 - programmers prioritize buckets with highest count
- Actually...
 - only upload first few hits on a bucket, others just inc.
 - programmers request additional data as needed

2-Phase Bucketing Strategy

• Labeling (on client): bucketed by failure point

```
outlook.exe,plugin.dll,v1.0.2305,0x23f5
{program name},{binary},{version},{pc offset}
```

- Classifying (on servers):
 re-bucketed toward root cause by !analyze
 - consolidate version and replace offset with symbol

```
outlook.exe,plugin.dll,memcpy
```

find caller of memcpy (because it isn't buggy)

```
outlook.exe,plugin.dll,foo
```

- etc.
- Paper contains <u>much</u> more detail on bucketing...

Bucketing Mostly Works

- One bug can hit multiple buckets
 - up to 40% of error reports
 memcpy(&MYVAR, j, 4);
 - one bucket when &MYVAR isn't mapped
 - many others when &MYVAR is in a data section
 - extra server load
 - duplicate buckets must be hand triaged
- Multiple bugs can hit one bucket
 - up to 4% of error reports
 - harder to isolate each bug
- ☐ Solution: scale is our friend

Outline

- ✓ Introduction
- ✓ How do you process billions of error reports?
- Experiences fixing
 - Software
 - □ Hardware
 - Malware
- ☐ Conclusion

Top 20 Buckets for MS Word 2010

- Bucket #: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 - ☐ Just 20 buckets account for **50% of all errors**
 - ☐ Fixing a small # of bugs will help many users

Fixing bugs in software

- First use found >=5-year old heisenbugs in Windows
- Windows Vista team fixed 5,000 bugs in beta
- Anti-Virus vendor fixed top 20 buckets and dropped from 7.6% to 3.6% of all kernel crashes
- Office 2010 team fixed 22% of reports in 3 weeks
- And you can fix yours...

Hardware: Processor Bug

- ☐ WER helped fix hardware error
- ☐ Manufacturer **could** have caught this earlier w/ WER

Other Hardware Bugs

- SMBIOS
 - memory overrun in resume-from-sleep
- Motherboard USB controller
 - only implemented 31 of 32 DMA address bits
- Lots of information about failures due to
 - overclocking
 - hard disk controller resets
 - substandard memory

Renos Malware

- ☐ Early detection w/o user action (renos, blaster, slammer, etc.)
- ☐ WER scales to handle global events

Other Things in the Paper

- Bucketing details (Sec. 3)
- Statistics-based debugging (Sec. 4)
- Progressive data collection (Secs. 2.2 & 5.4)
- Service implementation (Sec. 5)
- WER experiences (Sec. 6)
- OS Changes (Sec. 7)
- Related work (Sec. 8)

Conclusion

- Windows Error Reporting (WER)
 - the **first** post-mortem reporting system with automatic diagnosis
 - the largest client-server system in the world (by installs)
 - helped 700 companies fix 1000s of bugs and billions of errors
 - fundamentally changed SW development at MS

"WER forced us to stop making [things] up."

WER works because bucketing mostly works.

http://winqual.microsoft.com