
Detecting failures in distributed systems
with the FALCON spy network

Joshua B. Leners∗ Hao Wu∗ Wei-Lun Hung∗ Marcos K. Aguilera† Michael Walfish∗
∗The University of Texas at Austin †Microsoft Research Silicon Valley

ABSTRACT

A common way for a distributed system to tolerate crashes is to

explicitly detect them and then recover from them. Interestingly,

detection can take much longer than recovery, as a result of many

advances in recovery techniques, making failure detection the dom-

inant factor in these systems’ unavailability when a crash occurs.

This paper presents the design, implementation, and evaluation

of Falcon, a failure detector with several features. First, Falcon’s

common-case detection time is sub-second, which keeps unavail-

ability low. Second, Falcon is reliable: it never reports a process

as down when it is actually up. Third, Falcon sometimes kills to

achieve reliable detection but aims to kill the smallest needed com-

ponent. Falcon achieves these features by coordinating a network

of spies, each monitoring a layer of the system. Falcon’s main cost

is a small amount of platform-specific logic. Falcon is thus the first

failure detector that is fast, reliable, and viable. As such, it could

change the way that a class of distributed systems is built.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Net-

works]: Distributed Systems—Client/Server; Distributed applications; D.4.5

[Operating Systems]: Reliability—fault-tolerance

General Terms: Algorithms, Design, Experimentation, Performance, Reliability

Keywords: Failure detectors, high availability, reliable detection, layer-specific

monitors, layer-specific probes, STONITH

1 INTRODUCTION

Many distributed systems must handle crash failures, such as ap-

plication crashes, operating system crashes, device driver crashes,

application deadlocks, application livelocks, and hardware failures.

A common way to handle crashes involves two steps: (1) Detect the

failure; and (2) Recover, by restarting or failing over the crashed

component. Failure recovery has received much attention. For in-

stance, using periodic checkpoints, an entire VM can be failed over

in one second [22]; finer-grained components such as processes or

threads can be restarted even faster [15, 16]. Interestingly, failure

detection has received less attention, perhaps because it is a hard

problem. The fundamental difficulty is that uncertain communica-

tion delay and execution time make it hard to distinguish a crashed

process from one that is merely slow.

Given this difficulty, current approaches to failure detection use

a blunt instrument: an end-to-end timeout set to tens of seconds. As

a result, after a crash, a system can be unavailable for a long time,

waiting for the timer to fire. Indeed, we (and everyone else) are

personally familiar with the hiccups that occur when a distributed

system freezes until a timeout expires. More technically, examples

of timeouts in real systems include 60 seconds for GFS [29], at

least 12 seconds for Chubby [14], 30 seconds for Dryad [32], and

60 seconds for NFS. Of course, one could set a shorter timeout—

and thereby increase the risk of falsely declaring a working node

as down. We discuss end-to-end timeouts further in Section 2.2 and

for now just assert that there are no good end-to-end timeout values.

This paper introduces Falcon (Fast And Lethal Component Ob-

servation Network), a failure detector that leverages internal knowl-

edge from various system layers to achieve a new combination in

failure detection: sub-second crash detection time, reliability, and

little disruption. With these features, Falcon can (1) improve ap-

plications’ availability and (2) reduce their complexity. The target

applications are those in data centers and enterprise networks.

A failure detector is a service that reports the status of a re-

mote process as UP or DOWN. A failure detector should ideally have

three properties. First, it should be a reliable failure detector (RFD):
when a process is up, it is reported as UP, and when it crashes, it is

reported as DOWN after a while. Second, the failure detector should

be fast: the time taken to report DOWN, known as the detection time,

should be short (less than a second), so as not to delay recovery.

Third, the failure detector should cause little disruption.

The above properties are in tension with each other and with

other desired properties. For instance, a short detection time based

on timeouts would compromise reliability, since the detector would

report as DOWN a process that is up. As an alternative, a detector

could ensure reliability and a short detection time by killing pro-

cesses [6, 27] at the slightest provocation, but that would be dis-

ruptive. Also, short detection times often require probing the target

incessantly, which is costly. Another challenge is comprehensive-

ness: how can the detector maximize its coverage of failures?

The starting point in the design of Falcon is the observation that

many crash failures can be observed readily—by looking at the

right layer of the system. As examples, a process that core dumps

will disappear from the process table; after an operating system

panics, it stops scheduling processes; and if a machine loses power,

it stops communicating with its attached network switch. In fact,

if the failure detector infiltrates various layers in the system, it can

provide reliable failure detection using local instead of end-to-end

timeouts and sometimes without using any timeouts.

To infiltrate the system, Falcon relies on a network of spy mod-
ules or spies. At the cost of a small amount of platform-specific

logic, spies use inside information to learn whether layers are alive.

If a layer seems crashed, the spies kill it so that Falcon can report

DOWN with confidence. However, killing is a last resort and is sur-
gical: Falcon aims to kill the smallest possible layer.

A challenge that we address in Falcon is to provide a careful,

thorough, and general design for the collection of spies, to maxi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

279

mize detection coverage and to avoid disruption. Spies are arranged

in a chained network, where the spy in one layer monitors the

spy at the next layer up (e.g., the OS spy monitors the application

spy). Thus, in the common case, if any layer in the system crashes,

some spy will observe it. There are, however, two limiting cases in

Falcon. First, Falcon cannot assume that spies will detect every fail-

ure. Thus, Falcon includes a backstop: a large end-to-end timeout

to cover (the ideally rare) cases that the spies missed. Second, to re-

port DOWN reliably, Falcon must be able to communicate with the

remote system. Thus, if a network partition happens, Falcon pauses

until the network heals, which we think is acceptable since a parti-

tion likely disrupts most services anyway.

We have implemented and evaluated Falcon. In its current im-

plementation, Falcon deploys spies on four layers: application, OS,

virtual machine monitor (VMM),1 and network switch. We find that

for a range of failures, Falcon has sub-second detection time, which

is one or two orders of magnitude faster than baseline approaches.

This yields higher availability: adding Falcon to ZooKeeper [31]

(which provides configuration management, naming, and group

membership) and to a replication library [44] reduces unavailabil-

ity after some crashes by roughly 6×. Falcon’s CPU overhead and

per-platform requirements are small, and it can be integrated into an

application with tens of lines of code. Finally, Falcon can simplify

applications that use a failure detector: with RFDs, such applica-

tions can shed complex logic that handles failure detector errors

(e.g., a replicated state machine can be implemented with primary-

backup [9] instead of Paxos [35], thereby using 21% less code, in

our rough estimate).

The contributions of this work are as follows:

• The first viable and fast RFD. Previous RFDs (§2.2, §7) have

drawbacks that make them impractical: large timeouts (to avoid

killing aggressively) or disruption from small timeouts. Perhaps

for this reason, the conventional wisdom is that a viable RFD

cannot be built (§6.1), and indeed, most current failure detectors

are unreliable (i.e., not RFDs). Yet, a viable RFD could change

the way that we build a class of distributed systems (§6.5).

• Spies, a spy network, and their composition with existing tech-
niques (§2.3). Many of Falcon’s elements are not new; for in-

stance, killing to achieve reliability has been proposed before and

so, for that matter, have end-to-end timeouts, which Falcon uses

as a backstop. The new aspects of Falcon are (a) layer-specific

monitors (spies); (b) a network of chained spies, where a spy

monitors the spy in the next higher layer; and (c) composing

these two with existing techniques. We note that the purpose of

(a) and (b) is not just fast failure detection; they also reduce false

suspicion and kill surgically.

• The design of Falcon (§3). We provide a concrete, complete, and

sound design for Falcon, based on the key high-level ideas above.

• The implementation and evaluation of Falcon (§4, §5).

2 PROBLEM, PERILS, AND PRINCIPLES

2.1 Problem statement and setting
A reliable failure detector (RFD) is a service that, upon being

queried about the operational status of a (possibly remote) process

p, reports p as UP or DOWN, such that [19]:

• if the RFD reports p as DOWN, then p has crashed;

• if p crashes, then the RFD eventually reports p as DOWN (and

does so ever after).

1Our current implementation is geared to a system with virtualization,
but Falcon can be applied to a system with no virtual machines (§6.3).

If p crashes, the second property above allows the RFD to report p
as UP for some time—called the detection time—before it reports

DOWN. A fast RFD is one with short detection time. We wish to

build a fast RFD that is viable, meaning that it uses few resources,

and that minimizes disruption, meaning that it kills only if necessary

and, when it does so, kills only the smallest needed component.

Our target setting is a data center or enterprise system. The

target applications range from small-scale Web applications that

use primary-backup replication [9]; to large-scale storage systems

like GFS [29] and Dynamo [25]; to distributed systems that per-

form batch computations (e.g., MapReduce [24], Dryad [32], and

Hadoop [1]); to services, such as Chubby [14] and ZooKeeper [31],

that provide common distributed systems functions (group mem-

bership, leases, locks, etc.) to other applications.

We assume that (limited) modifications to the software stack are

permissible; this assumption holds in our target setting, in which

there is a single administrative domain, and may hold in other con-

trolled settings as well. Likewise, we assume that users are trustwor-

thy; access control is orthogonal and could be added to our design.

Our approach handles crash failures of any kind; handling Byzan-

tine failures is future work. Also, we design for monitoring within

a single data center (though our solution could be used across data

centers, with some drawbacks, as discussed in Section 6.4).

2.2 Why is failure detection vexing?
The fundamental difficulty in failure detection is that it is hard

to make judgments that are both quick and accurate—a problem

that exists in many intelligence contexts. This difficulty leads to

a choose-two-of-three situation, in which it is hard to achieve all

three of the goals of fast detection, reliability, and little disruption

but straightforward to achieve any two of them.

For instance, a failure detector (FD) can achieve accuracy and

little disruption by dithering in its reply until there is no question of

failure. Alternatively, an FD can achieve a fast detection time if it

is willing to jump to conclusions, sometimes producing inaccurate

suspicions of failure, at which point there are two ways to handle the

inaccuracy. First, the FD can back up its misjudgments by killing

the target; however, in converting bad calls into needless kills, this

approach sacrifices the goal of little disruption. Second, the FD can

give wrong answers, sacrificing reliability; such FDs are unreliable
failure detectors (UFDs) and force applications—if they are to be

responsible—to deal with added complexity, as we elaborate below.

We now highlight the above trade-offs in the context of exist-

ing approaches to failure detection; Section 2.3 describes the high-

level ideas that we use to break the impasse. The prevalent approach

to failure detection uses end-to-end timeouts. The problem is: how

does one choose the timeout value? Small values lead to premature

timeouts, while large timeouts lead to large detection times. In fact,

there may not be a perfect timeout value: the difference in latency

between normal and delayed requests in data center applications

can be several orders of magnitude (e.g., [24]). And while adap-

tive timeouts (e.g., [11, 21, 30]) might seem promising, adaptation

requires time; thus, if system responsiveness changes rapidly (e.g.,

from bursty load), one does not obtain an RFD.

To get an RFD, the failure detector can kill the process’s machine

(or virtual machine [5]) before reporting the process as DOWN (e.g.,

[6, 27]); this killing-based discipline is known as STONITH (for

Shoot The Other Node In The Head).2 Unfortunately, this approach

causes disruption: what used to be too-short timeouts convert to

2STONITH is folklore knowledge that appears to have been around since
the 1970s but not in published form.

280

RFD
interface

client
library

"App1"?

"down"

App1 App2

OS

VMM

switch

App1
spy

App2
spy

"down"

"up"

"up"

"up"

= spy
= monitoring
= call or

response

...

Figure 1—Architecture of Falcon. The application spy provides accu-
rate information about whether the application is up; this spy is the
only one that can observe that the application is working. The next spy
down provides accurate information not only about its layer but also
about whether the application spy is up; more generally, lower-level
spies monitor higher-level ones.

needless killing. Other RFD approaches include special hardware

(e.g., [52, 53]) or real-time synchronous systems built to bound de-

lays in every case. Such systems are expensive and inappropriate

for large data centers, where cost is a key consideration.

Why not give up on RFDs and instead implement an unreliable

failure detector (UFD), which is explicitly allowed to make mis-

takes? UFDs require applications to implement distributed algo-

rithms that handle the case that the UFD reports DOWN when a

process is up (and just slow). Unfortunately, such algorithms carry

added complexity. An example is Paxos-based consensus [35], used

in various systems [13, 14, 18, 31, 33, 39, 43, 49]. Under Paxos,

replicas never diverge, even if the system incorrectly detects a

crash of the current leader and thereby obtains multiple leaders.

Yet Paxos’s complexity is well known, as evidenced by the many

published papers that try to explain it [18, 34, 36, 37, 40, 45].

Developers have embraced UFDs because of the conventional

wisdom that it is impossible to implement a fast RFD that is viable

(§6.1). In this paper, we demonstrate that this wisdom is misleading,

at least in the context of data centers.

2.3 Design principles
The design principles underlying Falcon are as follows.

Make it reliable. With a reliable failure detector, other layers need

not handle failure detector mistakes and the resulting complexity.

Avoid end-to-end timeouts as the primary detection mechanism.

End-to-end timeouts can serve as a catch-all to detect unforeseen

failures, but they take too long to detect common failures.

Peek inside the layers. Layer-specific knowledge can indicate

crashes accurately and quickly. For example, if a process disappears

from the OS’s process table, it is dead, or if a key thread exits, the

process is as good as dead. Extracting this information requires a

module, which we call a spy, at each layer. A spy may use timeouts

on internal events (e.g., the main loop has not executed in 1 second),

but those timeouts are better informed and shorter than end-to-end

timeouts, as they reflect local, more predictable behavior.

Kill surgically, if needed. A spy may not always observe failures

correctly, but it must be reliable. Thus, it may kill when it suspects

a crash (e.g., the layer is acting erratically or a local timeout has

fired). Killing is expensive, so the RFD should kill the smallest nec-

essary component, rather than the entire machine, as in [27, 51, 53].

Such surgical killing conserves resources (e.g., a process is killed

while others in the same machine are not) and improves recovery

function description

init(target) register with spies
uninit() deregister with spies
query() query the operational status

set callback(callback) install callback function
clear callback() cancel callback function

start timeout(timeout) start end-to-end timeout timer
stop timeout() stop end-to-end timeout timer

Figure 2—Falcon RFD interface to clients.

time (e.g., only the process must be restarted, not the machine). A

similar argument was made by [15, 16] in the context of reboot.

Monitor the monitors. Spies are embedded in layers and can

crash with them, so spies too should be monitored. This calls for a

spy network, in which lower-level spies monitor higher-level ones.

3 DESIGN OF FALCON

Figure 1 depicts Falcon’s architecture. Falcon consists of a client
library as well as several spy modules (or spies) deployed at various

layers of the system. The client library provides the RFD interface

to the client, and it coordinates the spies. Roughly speaking, the

client library takes as input the identifier of a target, which specifies

a process whose operational status the client would like to know,

and returns UP or DOWN. A spy is a layer-specific monitor. A spy

is named by the layer monitored (e.g., the OS spy monitors the OS)

but may have parts running at several layers. The layers monitored

by our current implementation are application, OS, virtual machine

monitor (VMM), and network. Falcon assumes that lower layers

enclose higher ones, meaning that if a lower layer crashes, the layers

above it also crash or stop responding. This assumption holds by

design. As an example, if the VMM crashes, then both the OS and

application crash; as another example, if the network crashes, then

the higher layers become unresponsive.

The high-level difficulty in realizing Falcon out of spies is how

it should interact with them and use their knowledge to meet the

desired properties. Our experience is that ad-hoc approaches lead

to erroneous designs or ones that do not simultaneously achieve

reliability, fast detection, and minimal disruption (§6.2). Achiev-

ing these properties together requires carefully addressing the fol-

lowing questions: what interfaces are exposed by the RFD and the

spies, what spies do and how, how to orchestrate spies, and how to

handle various corner cases. The next sections address these ques-

tions in turn, focusing on aspects common to all spies. Section 4

describes the details of the spies in our implementation.

3.1 RFD interface
The RFD interface that Falcon presents to clients is shown in Fig-

ure 2. Function init indicates the target to be monitored, which iden-

tifies each layer (process name, VM id, VMM IP address, switch IP

address). Function query returns UP or DOWN for the target. How-

ever, a client may wish to monitor the target continuously while

waiting for a response or another event. Thus, rather than invoking

query repeatedly, it may be more efficient for the client to use a

callback interface. To that end, function set callback installs a call-

back function to be called when a spy reports LAYER DOWN or the

application spy reports LAYER UP. Function clear callback unin-

stalls the callback function. To support end-to-end timeouts, Falcon

needs to know when to start and stop the timeout timer, which the

client indicates by calling functions start timeout and stop timeout.

281

3.2 Objective and operation of spies
A given layer is supposed to perform some activity, and if the layer

is performing it, then the layer is alive by definition. In a Web server,

for example, activity may mean receiving HTTP requests or an in-

dication that there are no requests; for a map-reduce task, activity

may mean reading and processing from the disk; for a numerical

application, activity may mean finishing a small stage of the com-

putation; for a generic server, it may mean placing requests on an

internal work queue and waiting for a response; for the OS, it may

mean scheduling a ready-to-run process; and for a VMM, it may

mean scheduling virtual machines and executing internal functions.

The purpose of a spy is to sense the presence or absence of such

activity using specialized knowledge—which we sometimes call

“inside information”. A spy exposes three remote procedures:

• register() to register a remote callback (which is distinct from

the callback to the client in §3.1: the one here goes from a spy to

the client library);

• cancel() to cancel it; and

• kill() to kill the monitored layer.

If the layer that the spy is monitoring crashes, the spy immediately

calls back the client library, reporting LAYER DOWN; if the layer is

operational, the spy calls back the client library periodically, report-

ing LAYER UP.

A spy is designed to recognize the common case when the mon-

itored layer is clearly crashed or healthy. What if the spy is uncer-

tain? To support reliable failure detection, a report of LAYER DOWN

must be correct, always. (No exceptions!) Thus, if the spy is in-

clined to report LAYER DOWN but is not sure, the spy resorts to

killing: it terminates the layer that it is monitoring and then reports

LAYER DOWN. (Section 4 explains how spies at each layer kill re-

liably; the basic idea is to use a component below the layer to be

killed.) Of course, spies should be designed to avoid killing.

Figure 3 gives the pseudocode for our spies. UP-INTERVAL is

the minimum duration to wait before a spy indicates that the layer

is up, to prevent the spy from wasting resources with too frequent

LAYER UP reports; a reasonable value for UP-INTERVAL is 30 sec-

onds. The value of UP-INTERVAL does not affect detection time: a

spy reports that the layer is down as soon as it knows.

Below, in Section 3.3, we describe how the client library coor-

dinates the spies, assuming that (1) spies are ideal and (2) network

partitions do not happen. Sections 3.4 and 3.5 back off of these two

assumptions in turn.

3.3 Orchestration: spies spying on spies
To report the operational status of the target, the client library uses

the following algorithm. On initialization, it registers callbacks at

each spy at the target and sets a local status variable to UP. If the

client library receives a LAYER DOWN callback from any of the

spies, it sets the status variable to DOWN. When the client library

receives a query from the application, it returns the value of the

status variable.

To see why this algorithm works, first note that if the target appli-

cation is responsive then none of the spies returns LAYER DOWN—

because we are assuming ideal spies—and therefore the client li-

brary reports the status of the target correctly. If the target applica-

tion crashes but the application spy remains alive, then the applica-

tion spy returns LAYER DOWN and subsequently the client library

reports the status of the target correctly. However, the application

spy may never return, because it might have crashed. In that case,

we rely on the spy at the next level—the OS spy—to sense this

problem: in fact, the role of the layer-L spy can be seen as monitor-

remote-procedure register()
add caller to Clients
return ACK

remote-procedure cancel()
remove caller from Clients
return ACK

remote-procedure kill()
kill layer we are spying on and wait to confirm kill
return ACK

background-task monitor()
while true

sense layer and set rc accordingly
if rc = CERTAINLY DOWN then

callback(LAYER DOWN)
if rc = CERTAINLY UP then

if have not called callback within UP-INTERVAL then
callback(LAYER UP)

if rc = SUSPECT CRASH then
kill()
callback(LAYER DOWN)

function callback(status)
for each client ∈ Clients do

send status to client

Figure 3—Pseudocode for spies.

ing the layer-(L+1) spy, as shown in Figure 1. So here, the OS spy is

monitoring the application spy, and if the application spy is crashed,

the OS spy will eventually return LAYER DOWN—provided the OS

spy itself is alive. If the OS spy is not alive, this procedure contin-

ues at the spy at the next level, and so on. The ultimate result is that

if a spy never responds, a lower-level spy will sense the unrespon-

sive spy and will report LAYER DOWN, causing the client library to

report DOWN to the client.

We have not yet said how the spy on layer L + 1 is monitored by

the spy on layer L. The spy on layer L + 1 has a component at layer

L, for killing and for responding to queries. Given this component,

the spy on layer L can monitor the spy on layer L+1 by monitoring
layer L itself. This avoids the complexity of a signaling protocol

among spies. It works because, assuming ideal spies, the spy on

layer L + 1 is down (permanently unresponsive) if and only if layer

L is down.

3.4 Coping with imperfect spies
The last section assumed ideal spies. In this section, we identify the

types of mistakes that a spy can make, and we explain how Falcon

deals with these mistakes. While Falcon may take drastic actions

(killing or waiting for a long time), we expect them to be rare.

There are four types of spy errors that we consider, as shown in

Figure 4. Error A happens when a spy does not recognize a rare

failure condition and thus wrongly thinks that a layer is up; for in-

stance, an OS spy thinks that the OS is up because it shows some

signs of life, yet the OS has stopped scheduling requests. Error

B happens when there is a violation in the assumption from Sec-

tion 3.3 that a layer L is up if and only if the spy on layer L + 1 is

responsive. Error C is a spy’s reporting LAYER DOWN when either

the monitored layer is up or any spy above the monitored layer is

up. Error D occurs when none of the spies responds, because of a

network problem such as a partition.

282

Errors A and B cause the query function to always return UP de-

spite the application’s being down. To address this problem, Falcon

has a backstop: an end-to-end timeout started by the client. If this

end-to-end timeout expires, Falcon kills the highest layer that it can

and subsequently reports the target as DOWN.

Error C is not handled by Falcon and in fact Falcon is expressly

designed not to have this error: when a spy reports LAYER DOWN, it

must absolutely ensure that the layer is down, which means discon-

nected from the outside world. Error D is addressed in Section 3.5.

Figure 5 describes the client library’s pseudocode. There are sev-

eral points to note here. First, end-to-end timeouts are used to in-

dicate a failure only in the unlikely case that none of the spies can

determine that a layer is up or down. Second, each spy’s kill pro-

cedure is invoked by the client library when the end-to-end time-

out expires. This procedure attempts to kill the highest layer and, if

not successful after SPY-RETRY-INTERVAL, targets each lower layer

successively. In this manner, killing is surgical. A reasonable value

for SPY-RETRY-INTERVAL is 3 seconds; this parameter affects de-

tection time (by imposing a floor) but only when a large end-to-end

timeout expires, an event that we expect to be rare.

3.5 Network partition
We said above that lower-level spies monitor higher-level ones, but

no spy monitors the lowest level spy. Is that a problem? No, because

that spy inspects the network switch attached to the target, so it is

conceptually a spy on the target’s network connectivity. Thus, if the

client library does not hear from that spy, then the network is slow

or partitioned. (Our current implementation assumes that a machine

is attached to one switch; we briefly discuss the case of multiple

switches in Section 6.4.)

There are three ways to handle network partition. First, the client

library can block until it hears from the switch; this is what our

implementation does. This is reasonable because during a network

partition, other vital services (DNS, file servers, etc) are likely

blocked as well, making the system unusable. Second, the client

library can, after the client-supplied timeout expires, call back with

“I don’t know”; this is an implementation convenience that is con-

ceptually identical to blocking. Third, the client library can report

DOWN after it is sure that a watchdog timer on the switch has dis-

connected the target; meanwhile, in ordinary operation, the watch-

dog is serviced by heartbeats from the client library to the switch.

3.6 Application restart
If the application crashes or exits, and restarts, the client library

should not report the application as UP because clients typically

want to know about the restart (e.g., the application may have lost

part of its state in a crash). Therefore, when the application restarts,

Falcon treats it as a different instance to be monitored, and the orig-

inal crashed instance is reported DOWN.

To implement the above, the spy on a layer labels the layer with

a generation number, and the spy includes this number in messages

to the client library. Upon initialization, the client library records

each layer’s generation number. If it receives a mismatched genera-

tion number from a spy, then the associated layer has restarted and

function init(target)
for L← 1 to N do

invoke register() at spy in target[L]
Target← target
Status← UP

Callback← dummy function

function uninit()
for L← 1 to N do

invoke cancel() at spy in Target[L]

function query()
return Status

function set callback(callback)
Callback← callback

function clear callback()
Callback← dummy function

function start timeout(timeout)
start countdown timer with value timeout

function stop timeout()
stop countdown timer

upon receiving callback (status) from spy in Target[L] do
if status = LAYER DOWN then

Status← DOWN

Callback(DOWN)
if status = LAYER UP and L = N then Callback(UP)

upon expiration of countdown timer do
for L← N downto 1 do

invoke kill() at spy in Target[L]
if L �= 1 then wait for reply for SPY RETRY INTERVAL

else wait for reply // blocks on network partition; see §3.5.
if got reply then

Status← DOWN

Callback(DOWN)
return

Figure 5—Pseudocode for the client library. N is the number of moni-
tored layers and the layer number of the application.

the client library considers the monitored instance as down. (Gen-

eration numbers are omitted from the pseudocode for brevity.)

Implementing generation numbers carries a subtlety: the gen-

eration number of a layer needs to increase if any layer below it

restarts. Thus, a spy at layer L constructs its generation number as

follows. It takes the entire generation number of layer L − 1, left

shifts it 32 bits, and sets the low-order 32 bits to a counter that it

increments on every restart. (The base case is the generation num-

ber of the lowest layer, which is just a counter.) At the application

level, therefore, the generation number is a concatenation of 32-bit

counters, one for each layer. 32 bits are sufficient because a problem

occurs only if (a) the counter wraps around very quickly as crashes

occur rapidly, and then (b) the counter suddenly stops exactly where

it was the last time that the client library checked.

tag error / limiting case cause effect

A layer L is down, layer L − 1 is up, but spy on layer L reports LAYER UP bug in layer-L spy triggers end-to-end timeout and kills

B layer L is down, layer L − 1 is up, but spy on layer L is unresponsive bug in layer-L spy triggers end-to-end timeout and kills

C layer L is up, but spy on layer L or below reports LAYER DOWN should not happen would compromise RFD properties

D none of the spies responds network partition RFD blocks or watchdog timer fires

Figure 4—Errors and limiting cases in Falcon, and their effects.

283

spy
on
layer L

registration

inspector

enforcer

layer L
(monitored

layer)

layer L-1callbacks

kill request

Figure 6—Architecture of spies. A spy has two components: an inspec-
tor that gathers inside information and an enforcer that ensures the reli-
ability of LAYER DOWN reports (and may also use inside information).
The client library communicates with the enforcer.

4 DETAILS OF SPIES

The previous section described Falcon’s high-level design. This

section gives details of four classes of spies that we have built: ap-

plication spies, an OS spy, a virtual machine monitor (VMM) spy,

and a network connectivity spy. We emphasize that these spies are

illustrative reference designs, not the final word; one can extend

spies based on design-time application knowledge or on failures

observed in a given system. Nevertheless, the spies that we present

should serve as an existence proof that it is possible to react to a

large class of failures.

As shown in Figure 6, a spy has two components:

1. Inspector: This component is embedded in the monitored layer

and gathers detailed inside information to infer the operational

status, for example by inspecting the appropriate data structures.

2. Enforcer: This component communicates with the client library

and is responsible for killing the monitored layer; for these rea-

sons, it resides one layer below the monitored layer. This com-

ponent may also use inside information.

A spy has only two technical requirements (§3.2): it must even-

tually detect crashes of the layer that it is monitoring (and even

then, Falcon handles the case that the spy fails in this charge, per

§3.4), and it must be reliable, meaning that its LAYER DOWN an-

swers are accurate. However, in practice, a spy should be more am-

bitious; it should provide guarantees that are broader than the letter

of its contract implies. To explain these guarantees and how they

are achieved, we answer the questions below for each spy in our

implementation, which is depicted in Figure 7.

• What are the spy’s components, and how do they communicate?
There is a lot of latitude here, but we discuss in Section 6.3 the

possibility of a uniform intra-spy interface.

• How does the spy detect crashes with sub-second detection time?
Although a spy is required to detect crashes of the monitored

layer only eventually, it is most useful if it does so quickly.

• How does the spy avoid false suspicions of crashes and the re-
sulting needless kills? Avoiding false suspicion is not an explicit

requirement of a spy, but it is far better if the resulting needless

kills are kept to a minimum, to meet our goal of little disruption.

• How does the spy give a reliable answer? We break this question

into two: How does the spy know for sure when its layer is down?

If the spy is unsure, how does it kill the layer to become sure?

• What are the implementation details of the spy? Spies are un-

avoidably platform-specific, and we try to give a flavor of that

specificity as we describe the implementation details. Section 6.3

discusses how Falcon might work with a different set of layers

(e.g., with a JVM and nested VMs, or without VMs) and differ-

ent instances of each layer (e.g., Windows instead of Linux).

RFD
interface

client
library

App2

OS spy

VMM

OS

switch

VMM
spy

network
spy

App1

App1
spy

VMM
en-

forcer

OS
en-

forcer

incre-
ment-

er

app-enforcer

App2
spy

Figure 7—Our implementation of Falcon.

Application spies. All of our application spies have a common or-

ganization and approach.

Components. The inspector is a dedicated thread inside the ap-

plication; it calls a function f(), whose implementation depends

on the application. For example, in our primary-backup application

spy, f() checks whether the main event loop is processing events;

in our ZooKeeper [31] spy, f() tests whether a client request has

been recently processed, while a separate component submits no-op

client requests at a low rate.

The enforcer is a distinguished high-priority process, the app-
enforcer, which serves as the enforcer for all monitored applica-

tions on the same OS. An assumption is that if the OS is up, then so

is the app-enforcer; this is an instance of the assumption, from Sec-

tion 3.3, that “if layer-L is up, then so is the spy on layer-(L+1)”. As

discussed in Section 3.4, if the assumption is violated (which is un-

likely), then Falcon relies on an end-to-end timeout. The enforcer

communicates with each inspector over a connected inter-process

communication (IPC) channel.

Sub-second detection time. If the inspector locally detects a prob-

lem, it closes its handle to the connected IPC channel, causing the

enforcer to suspect a crash immediately (which it then handles per

Reliability, below). Similarly, if the application process exits or

crashes, then it brings the inspector down with it, again causing

an immediate notification along IPC.

In addition, every Tapp-check time units, the enforcer queries the

inspector thread, which invokes f(). The enforcer infers a crash if

f() returns “down”, if the IPC handle returns an error, or if the

inspector thread does not respond within an application specific

Tapp-resp time; the enforcer again handles these cases per Reliability,

below. We note that f() can use timing considerations apart from

Tapp-resp and Tapp-check to return “down” (e.g., the inspector might

know that if a given request is not removed from an internal queue

within 10 ms, then the application is effectively down).

The periodic queries from enforcer to inspector achieve sub-

second detection time in the usual cases because our implemen-

tation sets Tapp-check to 100 ms. While the precise choice is arbitrary,

the order of magnitude (tens or hundreds of milliseconds) is not.

Checking does not involve the network, and it is inexpensive—less

than 0.02% CPU overhead per check in our experiments (see Fig-

ure 14, Section 5.4 and divide by 10 to scale per check). That is, we

accept a minimal processing cost to get rapid detection time in the

usual cases. The remaining case is covered by Tapp-resp, which our

implementation sets to 100 ms of CPU time, yielding sub-second

detection time under light to medium load.

Avoiding false suspicions. The application spy avoids false sus-

picion in two ways. First, as mentioned above, the enforcer mea-

284

sures Tapp-resp by the CPU time consumed by the monitored appli-

cation, not real time; this is an example of inside information and

avoids the case that the enforcer declares an unresponsive applica-

tion down when in fact the application is temporarily slow because

of load. We note that this approach does not undermine any higher-

level (human or application) deadlines since those are expressed

and enforced by Falcon’s end-to-end timeout (§3.4).

A second use of inside information is that Tapp-resp is set by the

application itself. (Indeed, as mentioned in Section 2.3, timeouts are

ideally local and application-specific.) One choice is Tapp-resp =∞;

in that case, if the app inspector is unresponsive, then Falcon relies

on the end-to-end timeout. Or, an application might expect to be

able to reply quickly, given CPU cycles, in which case it can set a

smaller value of Tapp-resp for faster detection when the application

process is unexpectedly stuck.

Reliability. If the enforcer suspects a crash, it inspects the pro-

cess table. If the application process is not there, the enforcer no

longer has doubt and reports LAYER DOWN to the client library.

On the other hand, if the process is in the process table, then the

enforcer kills it (by asking the OS to do so) and waits for confir-

mation (by polling the process table every 5 ms) before reporting

LAYER DOWN. If the process does not leave the process table, then

Falcon relies on the end-to-end timeout.

Implementation details. The inspector and app-enforcer run on

Linux, and we assign app-enforcer the maximum real-time priority.

We also mlock it (to prevent swap out). The inspector is imple-

mented in a library; using the library requires only supplying f()

and a value of Tapp-resp. The IPC channel between inspector and app-

enforcer is a Unix domain socket. The enforcer kills by sending a

SIGKILL. We are assuming that process ids are not recycled during

the (short) process table polling interval; if a pid is recycled, the

end-to-end timeout applies.

OS spy. Our OS spy currently assumes virtualization; Section 6.3

discusses how Falcon could handle alternate layerings.

Components. The inspector consists of (a) a kernel module that,

when invoked, increments a counter in the OS’s address space and

(b) a high-priority process, the incrementer, that invokes this ker-

nel module every TOS-inc time units, set to 1 ms in our implementa-

tion. The enforcer is a module inside the VMM. The communica-

tion between the enforcer and the inspector is implicit: the enforcer

infers that there was a crash if the counter is not incremented. Be-

fore detailing this process, we briefly consider an alternate OS spy:

the enforcer could inspect a kernel counter like jiffies, instead of

a process-incremented counter. We rejected this approach because

an observation of increasing jiffies does not imply a functional OS.

With our approach, in contrast, if the counter is increasing, then the

enforcer knows that at least the high priority incrementer process is

being scheduled. The cost of this higher-level assurance is an extra

point of failure: if the incrementer crashes (which is unlikely), then

Falcon treats it as an OS crash. Specifically, the OS enforcer would

detect the lack of increments, kill, and report LAYER DOWN.

Sub-second detection time. Every TOS-check time units, the en-

forcer checks the OS. To do so, it first checks whether the VM of

the OS is running. If not, the enforcer reports LAYER DOWN to the

client library. Otherwise, it checks whether the counter has incre-

mented at least once over an interval of TOS-resp time units. If not,

the enforcer suspects that the OS (or virtual machine) has crashed,

which it handles per Reliability below. This approach achieves sub-

second detection time by choosing TOS-check and TOS-resp to be tens or

hundreds of milliseconds; our implementation sets them to 100 ms.

Avoiding false suspicions. Given the detection mechanism above,

a false suspicion happens when the counter is not incremented, yet

the VM is up. This case is most likely caused by temporary slow-

ness of the VM, which in turn results from load on the whole ma-

chine. To ensure that the OS spy does not wrongly declare failure

in such situations, we carefully choose TOS-inc, TOS-check, and TOS-resp

to avoid premature local timeouts most of the time, even in ex-

treme cases. This approach is inexact, as the VM could in theory

slow down arbitrarily—say, due to a flood of hardware interrupts—

triggering a premature local timeout. However, we do not expect

this case to happen frequently; if it happens, the enforcer will kill

the OS, but the spy will not return incorrect information.

We validate our choice of parameters by running a fork+exec

bomb inside a guest OS, observing that in a 30 minute period

(18,000 checks) the enforcer sees, per check, a mean of 97.8 in-

crements, with a standard deviation of 3.9, and a minimum of 34

(where one increment would have sufficed to satisfy the enforcer).

Of course, the operators of a production deployment would have

to validate the parameters more extensively, using an actual peak

workload. We note that these kinds of local timing parameters have

to be validated only once and are likely to be accurate; this is an

example of inside information (§2.3) and does not have the disad-

vantages of end-to-end timeouts (§2.2).

Reliability. If the VM is no longer being scheduled, the enforcer

can verify that case, using its access to the VMM. If the enforcer

suspects a crash, it asks the VMM to stop scheduling the VM and

waits for confirmation.

Implementation details. Like the app-enforcer, the incrementer

is a Linux process to which we assign the maximum real-time pri-

ority and which we mlock. Our VMM is standard Linux; the VMs

are QEMU/KVM [46] instances. The enforcer runs alongside these

instances and communicates with them through the libvirtd dae-

mon, which exposes the libvirt API, an interface to common vir-

tualization functions [41]. We extend this API with a call to check

the incrementer’s activity. Since all calls into libvirtd are block-

ing, we split the OS enforcer into two types of processes. A single-

ton main process communicates with the client library and forks a

worker process, one per VM, sharing a pipe with the worker pro-

cess. The workers use the libvirt API to examine the guests’ vir-

tual memory, kill guest VMs, and confirm kills.

VMM spy. Our implementation assumes the ability to deploy new

functionality on the switch. We believe this assumption to be rea-

sonable in our target environment of data centers and enterprise

networks (§2.1), particularly given the trend toward programmable

switches. We also assume that the target is connected to the network

through a single interface; Section 6.4 discusses how this assump-

tion could be relaxed.

Components. The inspector is a module in the VMM, while the

enforcer is a software module that runs on the switch to which the

VMM host is attached. The enforcer infers that the VMM is crashed

if, after a period of time in which the switch has not received net-

work packets through the port to which the VMM is connected, the

enforcer cannot reach the inspector (this detection method saves

network bandwidth, versus more active pinging). The two commu-

nicate by RPC over UDP.

Sub-second detection time. Every TVMM-check time units, the en-

forcer performs an aliveness check. This check takes one of two

forms. Usually, the enforcer checks whether the switch has received

network packets from the VMM over the prior interval. If this check

fails, or if an interval of TVMM-check-2 time units (set to 5 seconds in

our implementation) has passed since the last probe, the enforcer

probes the inspector with an RPC. If it does not get a response

285

Falcon goal larger benefit evaluation result section

• Even simple spies are powerful enough to detect a range of common failures. §5.1

fast detection availability
• For these failure modes, Falcon’s 99th percentile detection time is several hundred ms; existing

failure detectors take one or two orders of magnitude longer.
§5.1

• Augmenting ZooKeeper [31] and a replication library (PMP) [44] with Falcon (minus killing)
reduces unavailability by roughly 6× (or more, for PMP) for crashes below application level.

§5.2

little disruption availability
• For a range of failures, Falcon kills the smallest problematic component that it can. §5.3

• Falcon avoids false suspicions (and kills) even when the target is unresponsive end-to-end. §5.3

reliability simplicity
• As an RFD, Falcon enables primary-backup replication [9], which has 50% less replica over-

head than Paxos [35], and which requires less complexity (21% less code in our comparison).
§5.5

• Falcon’s CPU costs at each layer are single digits (or less) of percentage overhead. §5.4

inexpensive viability
• Falcon requires per-platform code: ≈2300 lines in our implementation. However, the added

code is likely simpler than the application logic that can be removed by using an RFD.
§5.5

• Falcon can be introduced into an application with tens or hundreds of lines of code. §5.2, §5.5

Figure 8—Summary of main evaluation results.

within TVMM-resp time units (set to 20 ms in our implementation),

it does NVMM-retry more tries (set to 5 in our implementation), for a

total waiting period of TVMM-resp · (NVMM-retry + 1) time units (120

ms in our implementation). After this period, the enforcer suspects

a crash and handles that case per Reliability, below. Similar to the

other spies, this one achieves sub-second detection time by choice

of TVMM-check: 100 ms in our implementation.

Avoiding false suspicions. First, our enforcer test is conserva-

tive: most of the time, any traffic from the VMM host placates the

enforcer. Second, we validate our choice of parameters by running

an experiment where 2000 processes on the VMM contend for CPU.

We set the enforcer to query the inspector 100,000 times, observing

a mean response time of 397 μs, with standard deviation of 80 μs,

and a maximum of 12.6 ms, which suffices to satisfy the enforcer.

As with the OS spy, the operators would need to do more extensive

parameter validation for production. Finally, although NVMM-retry is a

constant in our implementation, a better implementation would set

NVMM-retry proportionately to the traffic into the VMM. Then the test

would permit more retransmissions under higher load, accommo-

dating a message’s lower likelihood of getting through.

Reliability. If it suspects a crash, the enforcer “kills” the VMM,

by shutting down the network port to which the VMM is connected.

The enforcer has no doubt once it has shut down the port, at which

point it reports LAYER DOWN to the client library.

Implementation details. The VMM inspector runs as a process

on the VMM (which is standard Linux, as described above). The

VMM enforcer is a daemon process that we run on the DD-WRT

open router platform [23], which we modified to map connected

hosts to physical ports and to run our software.

Network spy. The inspector is a software module that runs on the

network switch connected to the target, and the enforcer is a mod-

ule in the client library. However, under our current configuration

and implementation of Falcon, the network spy does not check for

failures and does not affect Falcon’s end-to-end behavior or our ex-

perimental results. The reason is as follows. Falcon’s knowledge of

the network is limited to the switch attached to the target, so Falcon

has no way to (a) know whether the switch is crashed or just slow,

and (b) kill the switch if it is in doubt. The consequence is that

Falcon blocks when the switch is unresponsive.

Localizing network failures via modules in multiple switches is

future work (§6.4). For now, we leave the network spy in our design

as a placeholder for this extension.

5 EVALUATION OF FALCON

To evaluate our Falcon implementation, we ask to what degree

it satisfies our desired features for a failure detector (FD)—short

detection time, reliability, little disruption—and at what cost. We

also translate those features into higher-level benefits for the ap-

plications that are clients of Falcon. To do so, we experiment with

Falcon, with other failure detectors [11, 21, 30] as a baseline, with

ZooKeeper, with ZooKeeper modified to use Falcon, with a mini-

mal Paxos-based replication library [44], with that library modified

to use Falcon, and with a primary-backup-based replication library

that uses Falcon. Figure 8 summarizes our evaluation results.

Most of our experiments involve two panels. The first is a fail-
ure panel with 12 kinds of model failures that we inject to evaluate

Falcon’s ability to detect them (the kernel failures are from [42]).

The second is a transient condition panel with seven kinds of im-

posed load conditions, which are not failures, to evaluate Falcon’s

ability to avoid false suspicions. The failure panel is listed in Fig-

ure 9, and the transient condition panel is detailed in Section 5.3.

Since the panels are synthetic, our evaluation should be viewed as

an initial validation of Falcon, one within the means of academic

research. An extended validation requires deploying Falcon in pro-

duction environments and exposing it to failures in-the-wild.

Our testbed is three hosts connected to a switch. The switch is

an ASUS RT-N16. The software on the switch is the DD-WRT v24-

sp [23] platform (essentially Linux), extended with our VMM en-

forcer (§4). Our hosts are Dell PowerEdge T310, each with a quad-

core Intel Xeon 2.4 GHz processor, 4 GB of RAM, and two Gi-

gabit Ethernet ports. Each host runs an OS natively that serves as

a VMM. The native (host) OS is 64-bit Linux (2.6.36-gentoo-r5),

compiled with the kvm module [46], running QEMU (v0.13.0) and

a modified libvirt [41] (v0.8.6). The virtual machines (guests)

run 32-bit Linux (2.6.34-gentoo-r6), extended with a kernel mod-

ule and accompanying kernel patch (for the OS inspector).

5.1 How fast is Falcon?
Method. We compare Falcon to a set of baseline failure detectors

(FDs), focusing on detection times under the failure panel.

Figure 10 describes the baselines. These FDs are used in pro-

duction or deployed systems (the φ-accrual FD is used by the Cas-

sandra key-value store [17], static timers are used in many systems,

etc.); we borrow the code to implement them from [55]. All of these

FDs work as follows: the client pings the target according to a fixed

286

where injected? what is the failure? what does the failure model?

application forced crash app. memory error, assert failure, or condition that causes exit
application app inspector reports LAYER DOWN inside information that indicates an application crash
application/
Falcon itself

non-responsive app inspector since the app inspector is a thread inside the application, this models a buggy
application (or app inspector) that cannot run but has not exited

kernel infinite loop kernel hang or liveness problem
kernel stack overflow runaway kernel code
kernel kernel panic unexpected condition that causes assert failure in kernel

VMM/host VMM error; causes guest termination VMM memory error, assert failure, or condition that causes guest exit
VMM/host ifdown eth0 on host hardware crash (machine is separated from network)

Falcon itself crash of app enforcer bug in Falcon app spy
Falcon itself crash of incrementer bug in Falcon OS spy
Falcon itself crash of OS enforcer bug in Falcon OS spy
Falcon itself crash of VMM inspector bug in Falcon VMM spy

Figure 9—Panel of synthetic failures in our evaluation. The failures are at multiple layers of the stack and model various error conditions.

baseline FD T: timeout (ms) error parameters

Static Timer 10,000 0.0 timer = 10, 000
Chen [21] 5,001 0.0 α = 1 ms
Bertier [11] 5,020 0.0 β = 1, φ = 4, γ = 0.1,

mod step = 0
φ-accrual [30] 4,946 0.01 φ = 0.4297
φ-accrual [30] 4,995 0.001 φ = 0.4339

Figure 10—Baseline failure detectors that we compare to Falcon. The
implementations are from [55]. We set their ping intervals as p = 5
seconds, which is aggressive and favors the baseline FDs. For all but
Static Timer, the timeout value T is a function of network characteristics
and various parameters, which we set to make the error, e, small (e is
the fraction of ping intervals for which the FD declares a premature
timeout). We set φ-accrual for different e; in our experiments with no
network delay, Chen and Bertier have no observable error.

ping interval parameter p, and if the client has not heard a response

by a deadline, the client declares a failure. We define the timeout
T to be the duration from when the last ping was received until the

deadline for the following ping. The difference in these FDs is in the

algorithm that adjusts the timeout or deadline (based on empirical

round-trip delay and/or on configured error tolerance).

We configure the baselines with p = 5 seconds, which is pes-

simistic for Falcon, as this setting allows the baselines to detect

failures more quickly than they would in data center applications,

where ping intervals are tens of seconds [14, 29, 32], as noted in the

introduction. Likewise, we configure the φ-accrual failure detector

to allow many more premature timeouts (one out of every 100 and

1000 ping intervals) than would be standard in a real deployment,

which also decreases its timeout and hence its detection time.

We configure Falcon with an end-to-end timeout of 5 minutes;

Falcon can afford this large backstop because it detects common

failures much faster. For a like-to-like comparison between the

baselines (which are UFDs) and Falcon (which is an RFD), we also

experiment with a UFD version of Falcon called Falcon-NoKill,
which is identical to Falcon except that it does not kill.

Each experiment holds constant the FD and the failure from the

panel, and has 200 iterations. In each iteration, we choose the fail-

ure time uniformly at random inside an FD’s periodic monitoring

interval of duration p (for the baselines, p is the ping interval and

for Falcon it is 100 ms, per §4). To produce a failure, a failure gen-

erator running at the FD client sends an RPC to one of the failure
servers that we deploy at different layers on the target.

For convenience, our experiments measure detection time at the

FD client, as the elapsed time from when the client sends the RPC

to the failure server to when the FD declares the failure. This ap-

proach adds one-way network delay to the measurement. However,

we verified through separate experiments with synchronized clocks

that the added delay is 2–3 orders of magnitude smaller than the

detection times.

Experiments and results. We measure the detection times of the

baseline FDs and of Falcon-NoKill, for a range of failures. Under

constant network delay, we expect the baseline FDs’ detection times

to be uniformly distributed over [T − p + d, T + d];3 here, T and

p are the timeout and ping interval, as defined above and quantified

in Figure 10, and d is the one-way network delay. We hypothesize

that Falcon’s detection times will be on the order of 100 ms, given

spies’ periodic checks (§4).

Figure 11 depicts the 1st, 50th, and 99th percentile detection

times, under no network delay (d = 0). The baselines behave as

expected. For application crashes, Falcon’s median detection time

is larger than we had expected: 369 ms. The cause is the time taken

by the Java Virtual Machine (JVM) to shut down, which we veri-

fied to be several hundred milliseconds on average. For the failure

in which the app inspector reports LAYER DOWN, Falcon’s median

detection time is 75.5 ms. This is in line with expectations: the app-

enforcer polls the app inspector every Tapp-check = 100 ms, so we

expect an average detection time of 50 ms plus processing delays.

For the kernel hang, kernel overflow, and kernel panic failures,

Falcon’s median detection times are 204 ms, 197 ms, and 207 ms,

respectively. The expected value here is 150 ms plus processing de-

lays: every TOS-check = 100 ms, the OS enforcer checks whether the

prior interval saw OS activity (§4), so the OS enforcer in expecta-

tion has to wait at least 50 ms (the duration from the failure until

the end of the prior interval) plus 100 ms (the time until the OS en-

forcer sees no activity). The processing delays in our unoptimized

implementation are higher than we would like: 15 ms per check,

for a total of 30 ms per failure, plus tens of milliseconds from sup-

porting libraries and the client. Nevertheless, these delays, plus the

expected value of 150 ms, explain the observations.

3The largest detection time occurs when the target fails just after re-
plying to a ping; the client receives the ping reply after d time and
declares the failure at the next deadline after T time, for a detection
time of T + d. The smallest detection time occurs when the target fails
just before replying to a ping; after d time (when the ping reply would
have arrived), the client waits for T − p time longer, then declares the
failure, for a detection time of T − p + d.

287

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 F D C B P1 P2
app crash

 F D C B P1 P2
app layer-down report

 F D C B P1 P2
kernel hang

 F D C B P1 P2
kernel stack overflow

 F D C B P1 P2
kernel panic

 F D C B P1 P2
VMM error / guest exit

 F D C B P1 P2
host down

m
ed

ia
n

de
te

ct
io

n
tim

e
(s

ec
on

ds
)

(l
ow

er
 is

 b
et

te
r)

Figure 11—Detection time of Falcon (F) and baseline failure detectors under various failures. The baselines are Static Timer (D), Chen (C),
Bertier (B), φ-accrual with 0.01 error (P1), and φ-accrual with 0.001 error (P2); see Figure 10 for details. Rectangle heights depict medians, and
the bars depict 1st and 99th percentiles. The baseline FDs wait for multiple-second timers to fire. In contrast, Falcon has sub-second detection
time, owing to inside information and callbacks. Moreover, the comparison is pessimistic for Falcon: with ping intervals that would mirror a real
deployment, the baselines’ bars would be higher while Falcon’s would not change.

For the guest exit and host crash failures, Falcon’s median de-

tection times are 160 ms and 197 ms, respectively. For the guest

exit, the observed detection time matches an expected 50 ms (since

TOS-check = 100 ms) plus cleanup by the VMM of 90 ms plus pro-

cessing delays of tens of milliseconds. Likewise, for the host crash,

the observed detection time matches an expected 50 ms (since

TVMM-check = 100 ms) plus the 120 ms of waiting (see §4), plus

processing delays.

Falcon’s detection time is an order of magnitude faster than that

of the baseline FDs, for two reasons. First, inside information re-

veals the crash soon after it happens; second, the spies call back the

client library when they detect a crash. With larger ping intervals

p (which would be more realistic), the baselines’ detection times

would be even worse.

Our depicted measurements, here and ahead, are under no net-

work delay (roughly modeling an uncongested network in a data

center). However, we ran some of our experiments under injected

delays (d > 0) and found, as expected, that Falcon’s detection time

increased by d. We did not experiment with the baselines under net-

work delay; our prediction of their detection times (distributed over

[T − p + d, T + d]) is stated above. We did not experiment under

non-constant delay; based on their algorithms, we predict that the

baselines, except for Static Timer, would react to network variation

by increasing their timeout T . Falcon, meanwhile, would continue

to detect crashes quickly, improving its relative performance.

5.2 What is Falcon’s effect on availability?
We now consider the effect of improved detection time on sys-

tem availability. We incorporate Falcon into two Paxos-based [35]

applications that use failure detectors based on static timers:

ZooKeeper [31] (ZK) and a replication library [44] (PMP). The

modifications are straightforward: roughly 150 lines of Java and

100 lines of C, respectively. We compare unavailability of these

systems and their unmodified versions, in the case of a leader crash.

To apply Falcon, we use the spy for ZooKeeper, as described

in Section 4, and a PMP spy that checks whether the main event

loop is running; in both cases, we use Falcon-NoKill, as both sys-

tems’ unmodified failure detectors are unreliable. The unmodified

ZK detects a crashed leader either via a ten-second timeout or if the

leader’s host closes the transport session with the followers. The

unmodified PMP runs with its default of a ten-second timeout.

We configure ZK to use 4 nodes: 3 servers and 1 client (our

testbed has 3 hosts, so the client and a server run on the same

VMM). ZK partitions the servers into 1 leader and 2 followers.

The ZK client sends requests to one of the followers (alternating

 0

 2

 4

 6

 8

 10

 12

app crash kernel hang host down

m
ed

ia
n

re
sp

on
se

 g
ap

 (
se

co
nd

s)
(l

ow
er

 is
 b

et
te

r)

F F FUn

Un Un

Figure 12—Median response gap (unavailability) of ZooKeeper [31]
with Falcon-NoKill (F) and unmodified (Un) under injected failures at
the leader. In unmodified ZooKeeper, followers quickly detect applica-
tion crashes but not kernel- or host/VMM-level crashes. Under the lat-
ter types, Falcon reduces median ZooKeeper unavailability by roughly
a factor of 6. In all cases, unavailability is several seconds on top of
detection time because of ZooKeeper’s recovery time.

create()s and delete()s) when it gets a response to its last one,

recording the time of every response. For each of three failure types

and the two ZKs, we perform 10 runs. In each run, we inject a fail-

ure into the leader at a time selected uniformly at random between

3 and 4 seconds after the run begins. The result is a gap in the re-

sponse times. Example runs look like this:

ZK + Falcon

ZK (unmodified)

kernel hang

 0 5 10 15

time (sec)

Figure 12 depicts the durations of those response gaps. Under ap-

plication failures, ZK reacts relatively quickly because the follower

explicitly loses its transport session with the leader. Though the me-

dian of ZK+Falcon is 350 ms slower than with unmodified ZK,

this difference appears due to experimental variation (ZK+Falcon

also experiences transport session loss, and the standard deviations

are 566 ms for ZK+Falcon and 762 ms for unmodified ZK). Un-

der kernel and VMM/host failures, the ZK follower receives no

word that the system is leaderless, so it infers failure—and initiates

leader election—only after not having heard from the leader for 10

seconds. Under all failures, Falcon’s detection time is sub-second.

However, unavailability is detection time plus recovery time, and

in all of the depicted cases, recovery takes roughly 2 seconds: the

ZK follower, in connecting to the new leader, usually requires two

attempts separated by one second, and the client also has a retry

discipline that imposes delays of one second or more.

288

failure action taken by Falcon

app crash app enforcer detects failure
app layer-down report app enforcer kills application
app inspector hangs app enforcer kills application

kernel hang OS enforcer kills guest OS
kernel stack overflow OS enforcer kills guest OS
kernel panic OS enforcer kills guest OS

VMM error / guest exit OS enforcer detects failure
host down VMM enforcer kills VMM/host

crashed app enforcer + app crash E2E timeout kills guest OS
crashed incrementer OS enforcer kills guest OS
crashed OS enforcer + OS crash E2E timeout kills VMM/host
crashed VMM inspector VMM enforcer kills VMM/host

transient condition action taken by Falcon

hung system call none
CPU contention within guest none
CPU contention across guests none

memory contention within guest none
memory contention across guests OS enforcer kills guest OS
packet flood between guests none
packet flood between VMMs VMM enforcer kills VMM/host

Figure 13—Falcon’s actions under the failure panel and transient con-
dition panel. (Falcon-specific failures are augmented with target failures
because otherwise the Falcon failure has no effect.) Under the failures,
Falcon kills surgically while STONITH, for example, would kill more
coarsely. Under the transient conditions, Falcon correctly holds its fire
in most cases but sometimes suspects falsely and thus kills.

We run analogous experiments for PMP, and the results are sim-

ilar: tens of seconds of unavailability without Falcon and less than

one second with Falcon.

5.3 How disruptive is Falcon?
We now ask whether Falcon achieves its goal of little disruption,

which has two aspects: (1) If Falcon must kill, it should kill the

smallest possible component, and (2) Falcon should not kill if not

required (e.g., if the target is momentarily slow); that is, Falcon

should avoid false suspicions. To evaluate these aspects, we run

Falcon against our two panels, failures and transient conditions, re-

porting the component killed, if any. Figure 13 tabulates the results.

For aspect (1), Falcon’s reactions to the injected failures match

our expectations. If the failure is in the target, Falcon detects it and,

if needed, kills the smallest component of the target. If, however, the

failure is in Falcon itself (the last four injected failures), then there

are two cases. Either Falcon falls back on the end-to-end timeout,

killing the layer at which the spy failure occurred, or else Falcon in-

terprets the spy’s failure as a layer failure and kills the layer quickly

(e.g., as mentioned in Section 4, Falcon treats an incrementer crash

as an OS crash). Falcon’s surgical approach to reliability should be

contrasted with STONITH, which kills the entire machine (though

some implementations can target the virtual machine [5]).

For aspect (2), we apply the panel of transient conditions, listed

in the bottom part of Figure 13. We expected Falcon to hold its

fire in all of these cases, but there are two for which it does not.

First, when guests contend for memory, the VMM (Linux) swaps

QEMU processes that contain guests, to the point where there are

intervals of duration TOS-check when some guests—and their embed-

ded incrementers—do not run, causing the OS enforcer to kill. An

improved OS enforcer would incorporate further inside informa-

tion, not penalizing a guest in cases when the guest is ready to run

but starved for cycles. Second, when the network is heavily loaded,

CPU overhead (percent of a core’s cycles)

component (§4) app uses no CPU app uses 90% CPU

app inspector 0.06 0.04
app enforcer 0.11 0.07
incrementer 0.58 0.31
VM total 0.75% 0.42%

OS enforcer (main) 0.01 0.01
OS enforcer (worker) 0.04 0.03
libvirtd 0.91 0.95
QEMU 6.92 1.79
VMM inspector 0.39 0.27
VMM total 8.27% 3.07%

VMM enforcer 0.00 0.00
switch total 0.00% 0.00%

Figure 14—Background CPU overhead of our Falcon implementation,
under an idle dummy application and under one that consumes 90% of
its CPU. Each enforcer performs a local check 10 times per second. The
switch’s CPU overhead is less than one part in 10,000 so displays as 0.
QEMU’s contribution to the overhead is explained in the text.

the communication channel between VMM enforcer and VMM in-

spector degrades, causing the VMM enforcer sometimes (in 4 out of

15 of our runs) to infer death and kill. As mentioned in Section 4,

a better design would set NVMM-retry adaptively. In the other cases,

Falcon’s inside information prevents it from killing. For example,

the app-enforcer measures Tapp-resp based on CPU time (§4), so a

long block (e.g., the “hung system call” row) does not cause a kill.

5.4 What are Falcon’s computational costs?
Falcon’s benefits derive from infiltrating the layers of a system.

Such platform-specific logic incurs computational costs and pro-

grammer effort. We address the former in this section and the latter

in the next one.

Falcon’s main computational cost is CPU time to execute peri-

odic local checks (described in Section 4). To assess this overhead

we run a Falcon-enabled target with an idle dummy application

for 15 minutes, inducing no failures. We then run the same target

and application but with the Falcon components disabled (and with

QEMU and libvirtd enabled). In both cases, we measure the ac-

cumulated CPU time over the run, reporting the CPU overhead of

Falcon as the difference between the accumulated CPU times di-

vided by the run length.

Figure 14 tabulates the results. For the most part, Falcon’s CPU

overhead is small (less than 1% per component). The exception is

the QEMU process in the VMM layer. Two factors contribute to this

overhead. First, the Falcon-enabled virtual machine is scheduled

more frequently than the Falcon-disabled virtual machine (because

of Falcon’s multiple checks per second in the former case versus an

idle application in the latter case). To control for this effect, we per-

form the same experiment above, except that we run another appli-

cation, alongside the dummy, that uses 90% of the CPU. Under these

conditions, as depicted in Figure 14, QEMU contributes only 1.8%

overhead in the Falcon-enabled case. Second, the remaining over-

head is from QEMU’s reading guest virtual memory inefficiently

(when requested by the OS enforcer; see §4). We verified this by

separately running the experiment above (Falcon enabled, 90% CPU

usage by the dummy application) except that memory reads by the

OS enforcer were disabled. The difference in QEMU’s CPU usage

was 1.4%, explaining nearly all of the CPU usage difference be-

tween the Falcon-enabled and Falcon-disabled cases.

To mitigate the overhead of QEMU’s guest memory reads, we

289

module (§4) spy component (§4) lines of code

platform-independent modules
thread in app; glue (C++) app inspector 101
thread in app; glue (Java) app inspector 241
shared enforcer code all enforcers 465
client library client library 1287
client library glue (Java) client library 310
platform-independent total 2404

platform-specfic modules
app-enforcer process app enforcer 403
incrementer OS inspector 43
kernel module OS inspector 39
libvirt extensions OS enforcer 606
OS enforcer (main) OS enforcer 509
OS enforcer (worker) OS enforcer 83
libvirtd extensions OS enforcer 53
RPC module VMM inspector 103
DD-WRT extension VMM enforcer 450
platform-specific total 2289

application-specific modules
f() for Paxos (from [44]) app inspector 17
f() for primary-backup app inspector 42
f() for ZooKeeper [31] app inspector 159

Figure 15—The modules in our Falcon implementation and their lines
of code. The platform-independent modules assume a POSIX system.

could increase TOS-check (which would reduce the number of checks

but increase detection time) or improve the currently unoptimized

implementation of guest memory reads.

5.5 What is the code and complexity trade-off?
Although we can use Falcon in legacy software (as in §5.2, where

the gain was availability), Falcon provides an additional benefit to

the applications that use it: shedding complexity. However, this is

not “moving code around”: the platform-specific logic required by

Falcon has a simple function (detect a crashed layer and kill it if

necessary) while the logic shed in applications is complex (tolerate

mistakes in an unreliable failure detector).

Figure 15 tabulates the lines of code in our implementation, ac-

cording to [54]. (We do not count external libraries in our imple-

mentation: sfslite for RPC functions, yajl for JSON functions,

and libbridge for functions on the switch.) The platform-specific

total is fewer than 2300 lines. The application-specific code is much

smaller, for our sample implementations of f() (though a produc-

tion application might wish to embed more intelligence in its f()).

Next, we assess the gain to applications that use failure detec-

tors (FDs). Examples of such applications are ZooKeeper, Chubby,

state machine replication libraries, and systems that use end-to-end

timeouts based on pings of remote hosts.4 As noted in Section 2.2,

if the FD is a UFD, then the application needs complex algorithms

that can handle FD mistakes; for example, it might use Paxos [35]

for replication. However, if the application has access to an RFD

(as provided by Falcon), then it can use simpler approaches; for

example it can use primary-backup [9] for replication. Measuring

simplicity is difficult, but we compare the lines of code in (1) PMP,

which uses a static timer as an FD and Paxos for replication (see

§5.2), and (2) a replication library that we implemented, which

uses Falcon as an FD and primary-backup for replication. To make

4A non-example is an application that uses ZooKeeper, Chubby, or an-
other higher-level service that itself incorporates FDs. In these cases,
the simplicity benefit of Falcon accrues to the higher-level service, not
its user. We discuss ZooKeeper and Chubby further in Section 7.

replication approach lines of code # replicas/witnesses

Paxos (from [44]) 1759 3
Primary-backup 1388 2

Figure 16—Comparison of two different approaches to replicating state
machines: Paxos [35], as implemented in [44], and primary-backup [9],
as implemented by us. The Paxos row excludes FD code and generated
RPCs. The primary-backup approach is fewer lines of code because
it is simpler: it does not tolerate unreliable failure detection. Primary-
backup also has 50% lower replication overhead in the usual case.

the comparison like-to-like, we exclude PMP’s FD code from the

count.

Figure 16 lists the numbers, again according to [54]. The differ-

ence is only 371 lines, but this is 21% of the original code base. And

the percentage may be deceptively low: using Paxos in a real sys-

tem can require intricate engineering [18] whereas primary-backup

deployments are not known to suffer similarly. Moreover, primary-

backup has lower replication overhead than Paxos: to tolerate a

crash, Paxos requires three replicas (or two replicas and a witness),

while primary-backup requires just two replicas.

Assessing Falcon’s reliability. The simplification results only if

Falcon is truly reliable, meaning that it reports DOWN only if the tar-

get is down. Falcon’s spies are carefully designed and implemented

not to violate this property, and in our experience, Falcon has never

reported an up target as DOWN. However, we cannot fully guarantee

reliability without formally verifying our implementation.

6 DISCUSSION, EXTENSIONS, AND OUTLOOK
This section discusses how Falcon relates to the conventional wis-

dom that RFDs cannot be built (§6.1), why we favored Falcon over

alternatives (§6.2), how one might apply Falcon to other systems

(§6.3), what we see as future work (§6.4), and how Falcon might

affect distributed systems more broadly (§6.5).

6.1 Is the conventional wisdom wrong?
The conventional wisdom holds that a viable fast RFD cannot

be built, except with specialized hardware. So how did we build

Falcon? We explain the arguments for this wisdom by both practi-

tioners and theoreticians, and how Falcon overcomes them.

Practitioners argue that there is an inherent trade-off between

detection time and either accuracy or little disruption (§2.2). This

trade-off also applies to Falcon: for instance, by reducing the local

timeouts of spies, we can get even faster detection and more fre-

quent killing. However, by using inside information, Falcon shifts

the trade-off curve to a point where it becomes almost insignificant:

even when Falcon is configured to be relatively unaggressive, it of-

ten has very fast detection time (§5.1).

Theoreticians argue that RFDs cannot be implemented in asyn-

chronous systems subject to failures because RFDs can be used to

solve consensus, and consensus is impossible in such systems [28].5

Falcon does not contradict this: the theoretical result holds in a

model in which processes cannot infer crashes, and part of our point

is that processes can infer crashes, using inside information. Fur-

thermore, real systems are not asynchronous—a point that we and

others have made before [8]. Of course, a system can sometimes ex-

perience large delays, thereby behaving like an asynchronous sys-

tem; this causes Falcon to block temporarily, but that may be toler-

able (§3.5).

5Even in partially synchronous systems [26], where consensus can be
solved, one can prove that RFDs cannot be implemented [38].

290

6.2 Alternatives to Falcon
Falcon has two backstops: an end-to-end timeout, to catch unex-

pected conditions, and a chained spy structure, where the spy on a

layer monitors the spy on the next layer, to catch the death of spies

themselves. An alternate design would be to eliminate the chained

structure by not insisting that spies be monitored: there would be a

set of ad-hoc spies, each tuned to a particular vulnerability. We did

not pursue this design because a problem that both crashed a spy

and triggered the vulnerability monitored by the spy would not be

detected until the end-to-end timeout expired. Falcon, in contrast,

can often detect this case quickly.

Falcon uses local timeouts within each layer. One might wonder

if the local timeouts could be replaced with an end-to-end timeout

that is the minimum or the sum of the local timeouts. The answer

is no: with the minimum, there would be more frequent killing, and

with the sum, the detection time would be much larger. In fact,

even with the sum, there would be more frequent killing relative

to Falcon: spies can avoid killing based on internal signs of life that

are not visible end-to-end. One might wonder how this observation

relates to the end-to-end argument [47]. The end-to-end argument

states that functionality should be implemented at the end hosts (the

highest layers), when it is possible to do so completely and cor-

rectly. In our context, however, the desired functionality—detecting

failures quickly and reliably—can be provided only by infiltrating

the layers.

Another design alternative concerns the handling of intermittent
failures, such as temporary slowness of the target. We designed

Falcon to avoid reporting an intermittent failure as a crash when-

ever possible, but an alternative is to conflate both problems. We

eschewed that design for three reasons. First, clients may want to

distinguish a crash from an intermittent failure, because the for-

mer requires recovery with non-zero cost, while the latter is self-

healing. Second, to report an intermittent failure as a crash, an RFD

must kill, causing possibly unnecessary disruption. Third, by us-

ing Falcon and a timer, a client can infer an intermittent failure,

by observing that the target is unresponsive while Falcon deems it

operational. However, a service that reports where the intermittent

failure is, without calling it a crash, might be useful and would be

an instance of an FD with richer failure indication (§6.4).

6.3 Applying Falcon to different platforms
Although Falcon’s implementation targets a particular platform, we

think that its overall design is general. With a different platform,

Falcon needs to be tailored for two reasons. (1) The layers may be

different: the platform may or may not have VMs, nested VMs [10],

Java Virtual Machines (JVMs), etc. (2) A layer may have a different

instantiation: the OS layer could be Windows instead of Linux, the

VMM could be VMware instead of Linux with QEMU/KVM, etc.

We believe that we can keep small the tailoring from (1). The key

is to standardize the communication between enforcer and inspec-

tors, which would let us build different spy networks with minimal

changes to the spies. With standardization, we could handle the case

of no VMM by moving the OS enforcer to the network driver and

leaving the OS inspector unchanged. Or we could insert into the

JVM layer a JVM inspector and an enforcer for Java applications

and leave unchanged the current app enforcer and app inspectors.

Reason (2), in contrast, requires reimplementing spies. However,

because there are few OSs and VMMs, a small number of OS and

VMM spies could cover most platforms. And while the application

and network spy need to be implemented for each target, this cost

is modest (see Section 5.5 for counts of lines of code).

Falcon is only as good as its spies, so how can a developer design

useful new spies? Here are three guidelines. First and foremost, do

not kill aggressively. Even if the spy monitors few conditions, if it

does not kill aggressively, Falcon will fare better than an FD based

on end-to-end timeouts alone because Falcon detects the failures

monitored by the spy quickly and other failures as fast as the end-to-

end timeout. Second, optimize for monitoring the common failures

because therein lies the most benefit. Third, design the spy as an

iterative process, as the common failures may be unknown at first.

That is, the designer should first develop and deploy a simple spy

based on some rough knowledge of failures; then observe that the

spy fails to detect some common problem quickly (in which case

the end-to-end timeout fires); then enhance the spy, redeploy it, and

iterate until it catches all common problems. We used this process

to design some of the spies in Section 4.

6.4 Future work
Richer failure indication. When a crash occurs, Falcon outputs a

simple failure indication, but its spy network has much more infor-

mation: which layer failed and what problem was observed in that

layer. It would be useful to extend the FD interface to expose this

data to help applications recover.

Monitoring across data centers. We have been assuming that the

client library and the target are in the same physical data center. If

they are in separate data centers but in the same administrative do-

main, our implementation still works, with the proviso that Falcon

would block more often, since blocking happens if the client library

cannot communicate with the target’s switch (§3.5,§4). If they are

in different administrative domains, Falcon would need to incorpo-

rate access control and permissions.

Scalable monitoring. Our focus has been one process monitor-

ing another, but Falcon also works if n > 1 processes monitor

each other. However, there will be O(n2) monitoring pairs, which

should give us pause. Nevertheless, the actual resources consumed

can be made efficient. When a layer fails, the detecting spy sends

only O(n) LAYER DOWN reports. To avoid O(n2) messages during

healthy times, one option is to eliminate LAYER UP reports; another

is to extend Falcon with techniques such as gossiping [50].

Targets with multiple network interfaces. Falcon currently as-

sumes that the target’s host is connected to a single switch, so that

the VMM enforcer can kill the VMM by disabling the port of the

target’s host on the switch. If the target’s host is connected to mul-

tiple switches, we need to deploy a VMM enforcer at each switch

to disconnect all the ports of the target’s host.

Network failure localization. Ultimately, we would like to extend

Falcon’s spy network downward, into the network, to enable failure

localization. While one can imagine deploying spies on switches

en route from client library to target, this approach raises complex

questions related to the algorithms for detection, the approach to

remediation (killing will not be viable in many scenarios), and the

model for access control and administration.

6.5 Outlook
We finish by considering Falcon’s potential effect on distributed

systems, based on our expectations, postulations, and speculations.

The key features of Falcon are faster detection and reliability.

With faster detection, Falcon may change distributed systems in

four ways. First, it can improve availability by removing the pe-

riods when the system freezes for several seconds waiting for an

end-to-end timeout to expire. Second, because detection is faster,

291

the system has extra time to recover, so it can try multiple recovery

strategies. For example, there may be enough time to restart and

retry the failed component before taking the more drastic failover

action. Third, with extra time to recover, the system could spend

fewer resources during normal operation. For example, there may

be no need to keep a warm backup or to checkpoint the state as

often. Fourth, the system can afford more frequent failures while

maintaining the same availability, which allows for cheaper com-

ponents and less redundancy.

Besides fast detection, Falcon provides reliable detection,

which could simplify the design of some distributed systems and

algorithms—a point discussed in Sections 2.2 and 5.5 and which

we now briefly elaborate. There are many abstractions to help build

distributed systems including atomic registers, atomic broadcast,

leader election, group membership, view synchrony, and transac-

tions. However, these abstractions bring difficulty: materializing

them has required much thought and work in both theory and prac-

tice. The difficulty arises because distributed systems have many

sources of uncertainty: failures, slow messages and processes, con-

currency, etc. Falcon does not remove all sources of uncertainty,

but in its target domain—crash failures in data centers and enter-

prise networks—it eliminates a vexing one: the ambiguity between

slowness and failures.

7 RELATED WORK

Before describing other approaches to failure detection, we give

context. A formal theory of failure detectors, including definitions

for several classes of FDs (reliable, different kinds of unreliable,

etc.), was given by Chandra and Toueg [19]. That work estab-

lished that, with RFDs (as opposed to UFDs), simpler solutions

for consensus and atomic (totally-ordered) broadcast were possi-

ble. Subsequently, the theoretical advantages of fast RFDs were es-

tablished [7]. Despite this body of theory, it was not known how

to build an inexpensive failure detector that is reliable, fast, and

minimally disruptive, so we organize related work in terms of the

trade-offs among these characteristics.

We begin with unreliable FDs. Chen et al. [21] propose a failure

detector based on freshness points and end-to-end timeouts, where

the value is chosen adaptively based on delay and loss measure-

ments. Such end-to-end timeouts could be set using other tech-

niques too [11]. These approaches provide a binary indication of

failure. Accrual failure detectors [30], in contrast, output a numer-

ical value such that, roughly, the higher the value, the higher the

chance that the process has crashed. In practice, applications con-

sider the output to be an indication of failure if it is above a certain

threshold. There has also been a strand of work on scaling the fail-

ure detector to a large number of processes, with gossiping [50].

This approach also uses end-to-end timeouts, again resulting in a

UFD. Each of the above UFDs must trade detection time and accu-

racy, and none yields an RFD: end-to-end timeouts can be prema-

ture, and the guarantees of accrual FDs are probabilistic.

To realize an affordable RFD, one could augment any of the un-

reliable FDs above by backing up suspicion of failure with killing.

In that case, the tradeoff becomes fast detection versus disruption,

as what used to be false FD suspicions become needless kills. Such

reliable failure detectors can be implemented using watchdogs [27],

where the watchdog resets the machine based on an end-to-end

timeout. Likewise, the Linux-HA project [6] provides a service

called Heartbeat, which provides a failure detection service based

on end-to-end timeouts and can be configured to use a hardware

watchdog, or STONITH of real or virtual machines. Similarly, with

virtual synchrony [12] there is a notion of a process group (which

corresponds to the set of operational processes), and if a process

becomes very slow, it is excluded from the group via an end-to-

end timeout, which is akin to killing. In contrast to all of these ap-

proaches, Falcon provides surgical killing and uses fine-grained in-

side information to detect failures faster than an end-to-end timeout

would allow.

Surgical killing and fine-grained monitoring have appeared be-

fore but in different contexts. Candea et al. [16] articulated the bene-

fits of surgical killing (faster recovery time, less disruption), and we

concur. However, that work focuses on the application layer only,

and it solves an orthogonal problem to detection, namely recovery.

Fine-grained information is used in cluster monitoring, which col-

lects information about the current condition of hosts in a cluster

(e.g., [2–4]), possibly using application-specific data (load, queue

lengths, etc.). In contrast to Falcon, these services peek inside only

one layer (the application), monitor machines using an end-to-end

timeout, and do not have a license to kill (which is needed to get an

RFD). Fine-grained information is also used in the leader election

service of [48], which enhances a timeout-based failure detector by

suspecting a target if its pipe to a local module is broken. Here too,

the fine-grained information is limited to one layer, and the failure

detector does not kill.

A technique that does involve killing, which is used to increase

the availability of Web servers and other services, is to deploy a lo-

cal script that periodically checks if the application process is run-

ning. If not, or if the process has erratic behavior (such as very high

CPU usage), the script restarts the application, killing it first if nec-

essary. This technique is limited to one layer (nothing monitors the

script) and does not report the failure status to a remote process.

A system that can provide information about failures is

ZooKeeper [31], a service for configuration management, naming,

and group membership. Its ephemeral objects—objects that dis-

appear when the creator is deemed to have crashed—allow other

clients to detect the creator’s failure status. However, to implement

these objects, ZooKeeper internally needs a bona fide failure detec-

tor. It uses a UFD (§2.2) for this purpose, so its ephemeral objects

provide unreliable detection. However, we replaced its UFD here

with Falcon, and though we did not experiment much in this con-

figuration, the change makes ephemeral objects reliable and fast.

Another distributed systems building block is Chubby [14],

a lock service with named objects, sessions, and other features.

Chubby can address some of the problems that Falcon does. For

example, Chubby can avoid two active primaries in some applica-

tions. This is done with locks: the primary owns a lock and has a

session with Chubby. If the primary fails, Chubby releases the lock

only after the primary has lost its session. For this purpose, Chubby

uses large end-to-end timeouts and complex session management

logic; if incorporated into Chubby, Falcon could replace the former

and simplify the latter.

Other production services could also replace their failure detec-

tors, which are based on end-to-end timeouts, with Falcon. For ex-

ample, GFS [29] uses a timeout of 60 seconds for the primary of

a chunk. BigTable [20] uses end-to-end timeouts for sessions with

Chubby; it also uses timeouts to expire tablet servers. Dynamo [25]

uses end-to-end timeouts in its gossip protocol and between com-

municating nodes.

8 SUMMARY AND CONCLUSION

We began by observing that tolerating crashes requires not only

recovering from them—a problem that has been extensively

292

studied—but also detecting them in the first place, a problem that

has received comparatively less attention. This problem brings chal-

lenges, whose ultimate cause is the difficulty of quickly and accu-

rately classifying what is truly happening at a remote target. To lift

the fog of war, Falcon infiltrates the layers of a remote system with

spies, chains spies into a spy network, and combines these with

existing techniques (reliability by killing, end-to-end timeouts as a

backstop, etc.). To us, the most interesting aspect of Falcon is not

any of its individual techniques but rather that it composes them

into a system that achieves—as an ad-hoc design would not, judging

by our own discarded designs and revised reasoning—sub-second

detection, reliability, little disruption, and tolerable expense. This

combination is the key contribution of Falcon, and having made it,

Falcon now has the chance, we hope, to yield broader benefits: dis-

tributed systems that for the user are more responsive and for the

designer are more tractable.

Our implementation and experimental configurations are avail-

able at: http://www.cs.utexas.edu/falcon

Acknowledgments
An early prototype by James Kneeland inspired some of our im-

plementation choices. This paper was improved by careful, detailed

comments by Hari Balakrishnan, Allen Clement, Russ Cox, Trin-

abh Gupta, Carmel Levy, J.-P. Martin, Venugopalan Ramasubrama-

nian, Chao Ruan, Srinath Setty, Sam Toueg, Edmund Wong, Em-

mett Witchel, the anonymous reviewers, and our shepherd, Mar-

vin Theimer. The research was supported in part by AFOSR grant

FA9550-10-1-0073 and NSF grants 1055057 and 1040083.

REFERENCES
[1] http://hadoop.apache.org.

[2] http://www.managementsoftware.hp.com.

[3] http://www.bmc.com/products/brand/patrol.html.

[4] http://www.ibm.com/software/tivoli.

[5] DomUClusters – Linux-HA.

linux-ha.org/wiki/DomUClusters.

[6] Linux-HA, High-Availability software for Linux.

http://www.linux-ha.org.

[7] M. K. Aguilera, G. L. Lann, and S. Toueg. On the impact of fast

failure detectors on real-time fault-tolerant systems. In International
Conference on Distributed Computing (DISC), pages 354–370, Oct.

2002.

[8] M. K. Aguilera and M. Walfish. No time for asynchrony. In

Workshop on Hot Topics in Operating Systems (HotOS), May 2009.

[9] P. A. Alsberg and J. D. Day. A principle for resilient sharing of

distributed resources. In International Conference on Software
Engineering (ICSE), pages 562–570, 1976.

[10] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,

A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour. The

Turtles project: Design and implementation of nested virtualization.

In Symposium on Operating Systems Design and Implementation
(OSDI), pages 423–436, Oct. 2010.

[11] M. Bertier, O. Marin, and P. Sens. Implementation and performance

evaluation of an adaptable failure detector. In International
Conference on Dependable Systems and Networks (DSN), pages

354–363, June 2002.

[12] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in

distributed systems. In ACM Symposium on Operating Systems
Principles (SOSP), pages 123–138, Nov. 1987.

[13] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li.

Paxos replicated state machines as the basis of a high-performance

data store. In Symposium on Networked Systems Design and
Implementation (NSDI), pages 141–154, Apr. 2011.

[14] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In Symposium on Operating Systems Design and
Implementation (OSDI), pages 335–350, Dec. 2006.

[15] G. Candea, J. Cutler, and A. Fox. Improving availability with

recursive microreboots: A soft-state system case study. Performance
Evaluation Journal, 56(1–4):213–248, Mar. 2004.

[16] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.

Microreboot—a technique for cheap recovery. In Symposium on
Operating Systems Design and Implementation (OSDI), pages 31–44,

Dec. 2004.

[17] The Apache Cassandra project. http://wiki.apache.org/

cassandra/ArchitectureInternals#Failure_detection.

[18] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An

engineering perspective. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 398–407, Aug. 2007.

[19] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 43(2):225–267, Mar. 1996.

[20] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A

distributed storage system for structured data. In Symposium on
Operating Systems Design and Implementation (OSDI), pages

205–218, Nov. 2006.

[21] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service of

failure detectors. IEEE Transactions on Computers, 51(5):561–580,

May 2002.

[22] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High availability via asynchronous virtual

machine replication. In Symposium on Networked Systems Design
and Implementation (NSDI), pages 161–174, Apr. 2008.

[23] DD-WRT firmware. http://www.dd-wrt.com.

[24] J. Dean and S. Ghemawat. MapReduce: Simplified data processing

on large clusters. In Symposium on Operating Systems Design and
Implementation (OSDI), pages 137–150, Dec. 2004.

[25] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and

W. Vogels. Dynamo: Amazon’s highly available key-value store. In

ACM Symposium on Operating Systems Principles (SOSP), pages

205–220, Oct. 2007.

[26] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the

presence of partial synchrony. Journal of the ACM, 35(2):288–323,

Apr. 1988.

[27] C. Fetzer. Perfect failure detection in timed asynchronous systems.

IEEE Transactions on Computers, 52(2):99–112, Feb. 2003.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of

distributed consensus with one faulty process. Journal of the ACM,

32(2):374–382, Apr. 1985.

[29] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system.

In ACM Symposium on Operating Systems Principles (SOSP), pages

29–43, Oct. 2003.

[30] N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The φ
accrual failure detector. In IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 66–78, Oct. 2004.

[31] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:

Wait-free coordination for Internet-scale systems. In USENIX Annual
Technical Conference, pages 145–158, June 2010.

[32] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:

Distributed data-parallel programs from sequential building blocks.

In European Conference on Computer Systems (EuroSys), pages

59–72, Mar. 2007.

[33] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson, and

A. Venkataramani. Consensus routing: The Internet as a distributed

system. In Symposium on Networked Systems Design and
Implementation (NSDI), pages 351–364, Apr. 2008.

[34] J. Kirsch and Y. Amir. Paxos for system builders: an overview. In

International Workshop on Large Scale Distributed Systems and
Middleware (LADIS), Sept. 2008.

[35] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, May 1998.

[36] L. Lamport. Paxos made simple. Distributed Computing Column of
ACM SIGACT News, 32(4):51–58, Dec. 2001.

293

[37] B. Lampson. The ABCD’s of Paxos. In ACM Symposium on
Principles of Distributed Computing (PODC), page 13, Aug. 2001.

[38] M. Larrea, A. Fernández, and S. Arévalo. On the impossibility of

implementing perpetual failure detectors in partially synchronous

systems. In Euromicro Workshop on Parallel, Distributed and
Network-based Processing, pages 99–105, Jan. 2002.

[39] E. K. Lee and C. Thekkath. Petal: Distributed virtual disks. In

International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 84–92, Dec.

1996.

[40] H. C. Li, A. Clement, A. S. Aiyer, and L. Alvisi. The Paxos register.

In IEEE Symposium on Reliable Distributed Systems (SRDS), pages

114–126, Oct. 2007.

[41] libvirt: The virtualization API. http://libvirt.org/.

[42] Linux kernel dump test module. http://kernel.org/doc/

Documentation/fault-injection/provoke-crashes.txt.

[43] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and

L. Zhou. Boxwood: Abstractions as the foundation for storage

infrastructure. In Symposium on Operating Systems Design and
Implementation (OSDI), pages 105–120, Dec. 2004.

[44] D. Mazières. Paxos made practical. http:

//www.scs.stanford.edu/~dm/home/papers/paxos.pdf, as

of Sept. 2011.

[45] R. D. Prisco, B. Lampson, and N. Lynch. Revisiting the Paxos

algorithm. Theoretical Computer Science, 243(1–2):35–91, July

2000.

[46] Kernel based virtual machine. http://www.linux-kvm.org/.

[47] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in

system design. ACM Transactions on Computer Systems (TOCS),
2(4):277–288, Nov. 1984.

[48] N. Schiper, S. Toueg, and D. Ivan. Leader elector source code.

http://www.inf.usi.ch/phd/schiper/LeaderElection.

[49] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek,

and R. Morris. Flexible, wide-area storage for distributed systems

with WheelFS. In Symposium on Networked Systems Design and
Implementation (NSDI), pages 43–58, Apr. 2009.

[50] R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure

detection service. In International Middleware Conference
(Middleware), pages 55–70, Sept. 1998.

[51] P. Verı́ssimo. Uncertainty and predictability: Can they be reconciled?

In Future Directions in Distributed Computing (FuDiCo), pages

108–113. Springer-Verlag LNCS 2584, May 2003.

[52] P. Verı́ssimo and A. Casimiro. The Timely Computing Base model

and architecture. IEEE Transactions on Computers, 51(8):916–930,

Aug. 2002.

[53] P. Verı́ssimo, A. Casimiro, and C. Fetzer. The Timely Computing

Base: Timely actions in the presence of uncertain timeliness. In

International Conference on Dependable Systems and Networks
(DSN), pages 533–542, June 2000.

[54] D. A. Wheeler. SLOCCount.

http://www.dwheeler.com/sloccount/.

[55] GSoC 2010: ZooKeeper Failure Detector model. http://wiki.

apache.org/hadoop/ZooKeeper/GSoCFailureDetector.

294

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

