CAPS: Cache Allocation with Partial Sharing

Yaocheng Xiang
Peking University

Abstract

In a multicore system, effective management of shared last
level cache (LLC) has attracted significant research atten-
tion. However, almost none of the existing solutions had
been implemented on a real system until Intel introduced
Cache Allocation Technology (CAT) to its commodity pro-
cessors recently. CAT itself implements way partitioning and
thus can only allocate at a coarse granularity, which does not
scale well for a large thread or program count to serve their
various performance goals effectively. We overcome these
limitations by deliberately and precisely sharing part of the
allocations among programs and cores.

1. Introduction

Almost all existing studies of CAT are targeting quality of
service (QoS) (3545 7). They primarily provide high priority
programs with enough and dedicated cache resources, while
leaving the low-priority programs to share the rest. This
simple usage of CAT does not require fine-grained control
and not exploit much of its potential either.

In this paper, we propose Cache Allocation with Partial
Sharing (CAPS), a framework that manages shared cache
occupancy at a fine granularity. It is implemented on top of
CAT, and runs on a real system. CAPS aims to achieve pre-
specified performance goals, such as minimizing misses,
maximizing throughput, or ensuring fairness. Our result
shows that CAPS is able to support a wide range of per-
formance targets and can scale to a large core count.

Partial-sharing allows multiple cache partitions to overlap
with one another. We use an example to demonstrate how
partial-sharing can outperform non-sharing and full-sharing.
Two SPEC CPU2006 benchmarks, 470.lbm and 471.om-
netpp, are executed on 2 separate cores, sharing a 4-way
LLC, with 2816KB per way. We experiment on a real ma-
chine with all possible CAT allocation schemes and select

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SOSP’17 October 29-31, 2017, Shanghai, China

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN [to be supplied]...$15.00

Advisor: Yingwei Luo, Xiaolin Wang, Zhenlin Wang

Michigan Technological University
{yaocheng_x, yw, wxl}@pku.edu.cn

zlwang@mtu.edu

N omnetpp = omnetpp
lbm : : :) Ibm

‘Full-share:

Non-overlap:

‘Overlap:

Wayl Way2 Way3 Way4

Full-share Non-overlap Overlap

Figure 1. An illustration of full-sharing, non-overlapping
and overlapping schemes

the best non-overlapping and partially-overlapping schemes
that maximize the sum of instructions per cycle (IPC). Fig-
ureﬂ] (left) shows the allocation layout of the three schemes.
Figure[I] (right) compares IPC of the three. It is notable that
the partial-overlapping scheme outperforms the other two.

The main contributions of CAPS are: (1) a prediction
model that estimates miss rates and IPCs of multipro-
grammed workloads under any partially-overlapping CAT
scheme, and (2) with the prediction as input, a simulated an-
nealing algorithm that outputs a near-optimal solution given
a specific performance goal.

2. Prediction Model

Performance modeling and prediction is the first step and
the foundation of the optimization process. We derive a new
prediction model for CAPS which can accurately estimate
the miss rate and instructions per cycle (IPC) of a program
when it co-executes with other programs under any CAT
scheme. A CAT scheme is a collection of each core’s CLOS
(allocation). The inputs of the prediction model are miss
ratio curve (MRC) and accesses per instruction (API) of each
individual co-running program, as well as the CAT scheme
that is applied to them. We adopt the average eviction time
(AET) model (5) to construct MRC in linear time. Both
MRC and API are profiled offline in this work.

Since a program may share part of its cache space with
others, we first predict its real cache occupancy in each
shared partition. Inspired by a prior study of online cache
occupancy prediction for two threads (9), we establish a
similar iterative equation for multi-programmed cases as
follows.

Consider a cache of size C' is shared by N programs.
Each program currently occupies C1,Cy,...,CN respec-
tively, and generates M, Mo, ..., My misses during a small
period of time. Let M be the sum of all misses, then the new
occupancy for program i is: C| = C; + CE,Ci - M; — % .
(M — M;).

The equation is applied iteratively until it converges.
In practice, when the aggregate change of occupancies is
lower than a threshold, we consider an equilibrium has been
reached. Our result shows that it can always converge to a
stable condition given an initial occupancy.

During every time slice, with occupancy predicted we
can utilize the MRC to predict the actual miss rate. Then
EquationT|can be used to calculate misses.

Misses = MissRate x API x IPC x TimeSlice (1)

1
" CPlyyse + API x MissRate x MissPenalt(yz)

IPC is hard to estimate since so many factors can influ-
ence it. Here we use Equation [2|for a simple approximation.
MissPenalty and C' Py, are obtained based on the real ma-
chine LLC miss latency and an IPC profile collected from a
micro-benchmark that incurs no LLC misses, respectively.
Our experiments show that this simple model can provide
enough accuracy.

With the occupancy predicted, we can estimate the actual
miss rate and IPC. Our evaluation with a total of 750 experi-
ments on 4-program to 15-program workloads show that our
model has an average accuracy of 90.5% in reporting miss
rate and 80.1% for IPC. The time consumption of a predic-
tion process is about 0.01 seconds, on average.

1PC

3. Optimization Algorithm

The cache optimization problem can be summarized as fol-
lows: Given a performance target, find the optimal allocation
scheme. Optimization under CAT has a significantly larger
search space than previous techniques, since CAT requires
that each allocation is a set of contiguous cache ways and
overlapped allocations are also considered. Finding the op-
timal solution is an NP-hard problem. Here we choose three
metrics to cover different aspects of an optimization goal:

¢ Average MPKI. This metric indicates the average misses
per 1000 instructions (MPKI) among the co-executing
programs and is a lower-is-better metric. Let M R; be
the miss rate of program ¢ and APK I; the number of
accesses per 1000 instructions.

Average M PKI = Z(MRz x APKI,;)/#program

3)

e Throughput. Throughput is defined by the sum of all
programs’ IPCs. It is a higher-is-better metric.

Throughput = Z 1PC; “)

¢ Fair slowdown. Fair Slowdown balances both fairness
and performance. The idea is borrowed from previous
research (2; 8). In our work, it is defined as the har-
monic mean of per-program slowdown. Fair Slowdown
is a lower-is-better metric.

IPC;

FairSlowdown = #program/z W &)

With a performance target specified, to approximate a global
optimal solution in such a large search space, we adopt the
wisdom from the classic simulated annealing (SA) algo-
rithm. SA is a probabilistic technique to approximate global
optimization in a large search space (I} |6). The process of
the SA algorithm can be modeled as a random walk in the
search space of CAT schemes. We start from a random CAT
scheme. At each step, the algorithm decides whether moving
to a neighbor scheme or staying at current scheme. We call
two schemes neighbors if the difference between the two is
exactly one cache way. Different from a hill climbing algo-
rithm that always goes to a better state at each step, SA can
move to a worse state. The possible neighbor scheme is gen-
erated by randomly choosing a program, a side (left or right)
and an operation (add or remove). After we generate a new
neighbor scheme, it is fed into our prediction model to es-
timate the miss rate and IPC of each program and calculate
the metric. If the metric improves, the algorithm will accept
the new scheme. If it is worse, there is still a possibility to
accept it to avoid getting stuck in a local optimum.

4. Results and Analysis

We implement three polices in CAPS for evaluation. For
each metric, CAPS will output an optimized scheme. We run
this partially-overlapping allocation scheme, as well as the
full-sharing and the best non-overlapping scheme on the real
machine and compare the corresponding metrics measured
by hardware performance counters. We experiment on a total
of 75 multiprogrammed workloads: 10 workloads of 4, 6,
8, 12 and 15 programs, respectively, and 25 workloads of
10 programs. For AverageM PKI, CAPS can reduce it
by 16.96% compared to full-sharing on average, and up to
23.1%. Throughput increases by 11.11% on average, and
by 31.3% in the best case. FairSlowdown is reduced by
8.17% on average, and up to 13.2%. Typically, CAPS yield
more improvement over full-sharing with higher core count
and more sensitive programs. The average time for CAPS to
generate a solution is about 20 seconds.

5. Conclusion

In this paper, we propose Cache Allocation with Partial
Sharing (CAPS), a software framework that can (1) predict
shared cache occupancy at a fine granularity, (2) support a
wide range of performance goals, (3) scale to a large core
count, and (4) work on a real system.

References

[1] AARTS, E., AND KORST, J. Simulated annealing and boltz-
mann machines.

[2] CHANG, J., AND SOHI, G. S. Cooperative cache partitioning
for chip multiprocessors. In ACM International Conference
on Supercomputing 25th Anniversary Volume (2014), ACM,
pp. 402-412.

FUNARO, L., BEN-YEHUDA, O. A., AND SCHUSTER, A.
Ginseng: Market-driven llc allocation. In 2016 USENIX Annual
Technical Conference (USENIX ATC 16) (Denver, CO, 2016),
USENIX Association, pp. 295-308.

[4] HERDRICH, A., VERPLANKE, E., AUTEE, P., ILLIKKAL, R.,
GIANOS, C., SINGHAL, R., AND IYER, R. Cache qos: From
concept to reality in the intel® xeon(® processor €5-2600
v3 product family. In 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA) (2016),
IEEE, pp. 657-668.

[5] Hu, X., WANG, X., ZHoU, L., Luo, Y., DING, C., AND
WANG, Z. Kinetic modeling of data eviction in cache. In
2016 USENIX Annual Technical Conference (USENIX ATC 16)
(Denver, CO, 2016), USENIX Association, pp. 351-364.

[6] HWANG, C.-R. Simulated annealing: theory and applications.
Acta Applicandae Mathematicae 12, 1 (1988), 108-111.

[7]1 Lo, D., CHENG, L., GOVINDARAJU, R., RANGANATHAN,
P., AND KOzYRAKIS, C. Heracles: improving resource ef-
ficiency at scale. In ACM SIGARCH Computer Architecture
News (2015), vol. 43, ACM, pp. 450-462.

[8] Luo, K., GUMMARAIJU, J., AND FRANKLIN, M. Balancing
thoughput and fairness in smt processors. In Performance
Analysis of Systems and Software, 2001. ISPASS. 2001 IEEE
International Symposium on (2001), IEEE, pp. 164-171.

[9] WEST, R., ZAROO, P., WALDSPURGER, C. A., AND ZHANG,
X. Online cache modeling for commodity multicore proces-
sors. ACM SIGOPS Operating Systems Review 44, 4 (2010),
19-29.

3

—

	Introduction
	Prediction Model
	Optimization Algorithm
	Results and Analysis
	Conclusion

