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Abstract
Distributed systems are difficult to design and implement
correctly. There is a growing interest in specification lan-
guages for distributed systems, which can be checked ex-
haustively or proved to satisfy certain properties. For exam-
ple, Amazon uses TLA+ and PlusCal in building its web ser-
vices [14]. PlusCal is a formal specification language which
has simple constructs for synchronization, nondeterminism,
and specifying safety and liveness, which makes it an ideal
choice to specify distributed algorithms. However, currently
there is no tool to correspond a PlusCal specification with
the implementation. Towards this end, we are building PGo,
which can currently compile a considerable subset of Plus-
Cal algorithms into Go programs.

1. Introduction
Distributed systems involve many nodes running asyn-
chronously, and must tolerate faults such as network fail-
ure and machine crashes. These properties make distributed
systems difficult to reason about. Bugs in these systems can
be subtle and have catastrophic consequences. For exam-
ple, Amazon’s Elastic Compute Cloud (EC2) had a rare race
condition which caused a major outage [1].

TLA+ is a formal specification language for concurrent
systems. TLA+ is based on set theory, discrete mathematics,
and the temporal logic of actions (TLA). A TLA+ specifi-
cation can be checked using the TLC model checker, and
the TLA proof system (TLAPS) facilitates the writing of
machine-checked proofs. PlusCal is a language that makes
it easier to write TLA+ specifications. PlusCal has a C-style
syntax and can be translated into TLA+. Model checking is
tractable in TLA+ and PlusCal because systems can be spec-
ified at an abstract level: the specification writer can write
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interfaces for the components of the system and check their
implementations individually [9].

TLA+ and PlusCal have been used by industry to ver-
ify deployed distributed systems. Amazon uses TLA+ and
PlusCal to verify the systems running their web services, as
a design tool, and as a form of documentation [14]. Geam-
basu et al. used TLA+ to specify different distributed file
systems [5], with the conclusion that formal specification
enables the developer to reason about complex systems at
a higher level of abstraction. Many research systems, such
as SMART [12] and a Byzantine-fault-tolerant version of
Paxos [2], have accompanying TLA+ specifications and
proofs of correctness [7, 10].

While PlusCal can be verified using TLC and TLAPS,
there is no way to correspond a PlusCal specification and
its implementation. This limits confidence in the correctness
of the implementation. For example, a developer who is
implementing the specification may introduce bugs.

We introduce PGo, a compiler for PlusCal that reduces
the amount of manual translation needed to convert PlusCal
into executable code. PGo compiles a PlusCal specification
into Go while preserving its semantics, so that a verified
PlusCal algorithm compiles to a correct Go implementation.

2. Related work
Other frameworks have been developed with a similar goal
of corresponding specification and implementation. A com-
mon point between these is that their specification languages
lack PlusCal’s useful abstractions. PGo aims to offer both
the simplicity and fast model checking of PlusCal and the
correctness of the implementation.

Mace and P are domain-specific languages for specify-
ing distributed systems and asynchronous state machines,
respectively [3, 8]. Mace and P can both be model checked
and compiled into executables. However, these languages
lack proof systems and model checking may be impracti-
cal, since the specification writer must implement low-level
details, contributing to state-space explosion. PlusCal’s lan-
guage features make it simpler to express core concurrency
features of a system.



Verdi is a framework which corresponds the specifica-
tion of a distributed system with a fault-tolerant implemen-
tation [15]. A Verdi specification is written in OCaml assum-
ing an ideal network and verified with the Coq proof system.
Verdi then transforms the specification into an equivalent im-
plementation which is tolerant of network faults and node
failures. Verdi does not have a model checker, so Verdi sys-
tems must be verified by writing a Coq proof, which requires
more developer effort than specifying correctness properties
and using a model checker to verify them. Similarly, Iron-
Fleet is a proof system for Dafny [6]. IronFleet similarly
requires significant developer effort to generate a proof of
correctness.

MODIST is a model checker for unmodified distributed
systems [16]. MODIST bypasses the need for a formal
specification language, as the implementation itself can be
checked. However, using MODIST is impractical for large
systems, since the state space expands due to low-level im-
plementation details.

3. Design
Compilation of PlusCal presents several challenges:

• Inferring types of an untyped language, and guaranteeing
type safety of the compiled program.
PlusCal is an untyped language, but it has well-defined
primitive types: numbers, sets, maps, and tuples. PGo in-
fers types of variables based on the TLA+ expressions
used in assignments and variable declarations. PGo’s in-
termediate type system allows it to detect type conflicts.

• Compiling complex expressions, such as set notations,
without sacrificing readability of the compiled code.
PGo includes the pgoutil Go library which imple-
ments complex TLA+ operators and data structures. This
allows the compiled Go program to have readability sim-
ilar to the PlusCal specification.

• Translating abstractions (e.g., constants defined to be ar-
bitrary) into concrete implementations.
PGo requires arbitrary constants to be annotated with a
concrete value or compiles these into program inputs.

• Preserving concurrency semantics, especially synchro-
nization and atomicity.
Multiprocess PlusCal algorithms are compiled to Go pro-
grams that spawn a goroutine for each PlusCal process.
Currently, PGo performs rudimentary static analysis to
determine the groups of variables that must be guarded
by a mutex. An atomic step (indicated by labels in Plus-
Cal) is performed by locking the mutex which guards the
variables accessed in that step.

4. Evaluation
We tested PGo on PlusCal specifications of the n-queens al-
gorithm and on Dijkstra’s mutual exclusion algorithm [4].

The PlusCal version of the n-queens algorithm is a single-
process algorithm which includes several complex TLA+ set
expressions and nontrivial PlusCal language constructs. The
PlusCal version of Dijkstra’s mutex is a simple multipro-
cess algorithm but is challenging to compile due to its use of
maps and different labeled grains of atomicity. In both cases,
PGo compiled executable Go code which produced the ex-
pected output when run without modification.

5. Future directions
We are actively developing PGo1. Here we overview some
of our ongoing work.

Evolving specifications/implementations. Our goal is
to expand PGo into a suite of tools that allow developers
to manage the correspondence between a formal spec and
an implementation, even as both of these change over time.
Currently, any editing of the Go code compiled by PGo will
weaken the correspondence with the specification. One pos-
sible solution for this is to use design by contract [13] for
different components of the specification, and to insert run-
time checks for the contracts. The developer could also an-
notate components of the PlusCal spec that will be modified
after compilation and manually associate contracts with the
component interface. A contract can be expressed in PlusCal
with assertion statements, or as a TLA+ interface refinement.

Other language features. PGo is missing support for
certain PlusCal language features, such as await. We plan
to add support for await by using Go’s sync.Cond.

IPC and networking support. We plan to support anno-
tations that allow the developer to express how to compile
inter-process communication in PlusCal. For example, PGo
may autogenerate the necessary RPC logic in Go.

Beyond Go. PGo’s intermediate structure can be com-
piled to other targets, such as C++ and Java.

Verifying PGo. PGo has not been verified. To be certain
that it produces correct code, we would like to use existing
compiler verification best practices [11].

6. Conclusion
We have introduced PGo, a compiler from PlusCal formal
specifications into Go language. PGo can be used to reduce
the developer burden of implementing a specification cor-
rectly, and thus increase their confidence in the correctness
of the implementation.
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