
A Control-based Approach Towards Adaptive Stream Processing

Student: Luo Mai
Advisors: Kai Zeng, Rahul Potharaju, Paolo Costa, Sriram Rao

Imperial College London, Microsoft
luo.mai11@imperial.ac.uk, {kaizeng, rapoth, pcosta, sriramra}@microsoft.com

CCS Concepts •Software and its engineering → Soft-
ware system structures

Keywords Dataflow System, Stream Processing, Data In-
gestion, Control System, Real-time Analytic

1. Motivation
Large-scale Internet-service providers such as Amazon,
Google, Facebook, and Microsoft generate tens of millions
of data events per second (Bailis et al. 2017). To handle such
high throughput, they have traditionally resorted to offline
batch systems, e.g., Spark SQL (Armbrust et al. 2015) and
Hadoop MapReduce (Dean and Ghemawat 2008). More re-
cently, however, there has been an increasing trend towards
switching to online streaming systems to ensure timely pro-
cessing and avoid the delays incurred by batching (Jindal
et al. 2017; Meehan et al. 2017; Abraham et al. 2013).

Fully achieving the benefits promised by these online
systems, however, proved particularly challenging. To start
with, event-based workloads exhibit high temporal and spa-
tial variability, up to an order of magnitude compared to the
average load (Kulkarni et al. 2015; NetFlix 2016). Further,
due to the large number of servers involved, failures and
hardware heterogeneity makes it hard to ensure stable and
predictable performance. Together these issues significantly
complicate resource provisioning, forcing system adminis-
trators to over-provision resources, with the obvious nega-
tive consequences on cost and complexity.

An alternative and more efficient approach would be to
dynamically modify the system reconfiguration (e.g., by
adding/removing resources or by redistributing operators)
whenever the workload or the environment changes. This
would entail extending the streaming platform with a set of
control policies and mechanisms that can reconfigure the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

c© Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN [to be supplied]. . . $15.00

setup based on the new conditions. Such approach, however,
requires addressing four main requirements.

Programmability The control plane should be able to sup-
port a heterogeneous set of policies, providing sufficient
hooks to monitor the current performance and supporting
flexible triggers to react accordingly;

Easy-to-understand abstraction The control plane should
make it easier for developers to create new custom poli-
cies, using a simple and intuitive interface;

Zero downtime The control plane should able to reconfig-
ure systems without downtime. Taking system offline in-
curs data loss and delays that can negatively affect down-
stream computation (Goel et al. 2014);

Scalability and low-overhead The control plane should be
able to support an arbitrarily large number of policies and
should add negligible runtime overhead.

To the best of our knowledge, none of the existing
streaming systems fully addresses the requirements above.
Heron (Kulkarni et al. 2015) and Flink (Carbone et al.
2015) have monolithic control planes, lacking a well-defined
control-plane API, which makes it hard to implement new
control policies. Further, they rely on a centralized controller
architecture, which suffers from scalability limits. There-
fore, Heron and Flink support only a small set of predefined
control policies (dynamic scaling and back pressure). More-
over, during reconfigurations, these systems have to freeze
data processing and save / recover intermediate state, result-
ing in noticeable system downtime. Spark Streaming (Za-
haria et al. 2013), instead, adopts a micro-batching-style ar-
chitecture in which a set of events is buffered and processed
as a batch. While this model allows to modify a dataflow
across batches, it has limited flexibility due to the hard batch
boundaries and incur high runtime overhead due to the syn-
chronization and scheduling operations required.

2. Our Approach
To address the shortcomings of today’s systems, we propose
a novel design that integrates the data- and control-plane.
The key idea is to treat control events as data events, adopt-
ing a shared programming and management style. Control

events are interposed in between data events and are propa-
gated as part of the data event stream. This yields several key
advantages. First, by leveraging the existing data pipeline,
control events can be streamed at high rate and in a scalable
fashion, without requiring any ad hoc mechanism. This en-
ables running multiple control policies concurrently (e.g., in
a multi-tenant scenario or for A/B testing of new policies),
without impacting the overall system performance. Second,
adding control events right after data events provides an in-
tuitive way to logically define the boundaries of data events
to which the control events are applied. Thanks to the reli-
able and in-order delivery provided by the underlying data
channel, this greatly simplifies control management because
no coordination is required to ensure that no events have
been missed by the control operations. Finally, along with
local-blocking events, our design also supports non-blocking
control events, which are processed and transferred asyn-
chronously, thus avoiding expensive global synchronization
and high runtime overhead. This makes it easy to efficiently
implement global operations (e.g., snapshotting), which typ-
ically entail costly synchronization steps.

Control actions are triggered asynchronously on the dif-
ferent dataflow nodes depending on spatial and temporal
conditions. Control events are defined using an extensible
interface inspired by the reactive programming paradigm.
This significantly reduces the burden on developers when
implementing new control policies as they do not have to
learn a separate API or rely on different management tools.
Our simple API can encode a wide range of control policies,
including stateful dynamic scaling, hot query refinement,
non-blocking checkpoints, and asynchronous replays. These
events require local synchronization for multiple channel in-
puts so that they can preserve the order of concurrent control
policies (i.e., local-blocking). In addition, we also developed
the control events for batch completion, watermark advance-
ment, heartbeat, and statistics collection. These events are
tolerant to processing order and thus do not require local
synchronization (i.e., non-blocking).

To validate our claims and evaluate the runtime perfor-
mance of our new control-plane design, we implemented
it on top of Flare, a new distributed streaming dataflow
system that is incubated within Microsoft. Flare exposes
traditional stream analytic operators including windowing,
group-by aggregates, filters, stream joins and user-defined
functions. These operators can be combined to express com-
plex event processing logic and then translated into a stream-
ing dataflow. Multiple data flows are managed by parallel
controllers. They are independently monitoring performance
and executing control policies, thus establishing concurrent
feedback-loop controls. To achieve performance, Flare is
built on top of Orleans (Bernstein et al. 2014), a scalable
distributed actor framework, and uses Trill (Chandramouli
et al. 2014) as the underlying stream processing engine.

While we chose to showcase our approach on top of
Flare for ease of implementation and deployment on our
internal clusters, our design is not tied to a specific platform
and, with modest additional engineering effort, it can be
ported to existing systems such as Flink, which supports
checkpoint messages that can serve as the starting point for
implementing the control events proposed by this paper.

3. Current Status
We are finalizing the implementation of Flare and in the
process of deploying it onto a production ingestion cluster,
comprising hundreds of servers. In the following, we outline
the control policies that we have developed thus far and
report on the results of our preliminary experiments on an
Azure VM cluster.

Statistic collection. We implemented a control policy to
collect statistics generated by each data flow node and
propagate them with the data stream to the controller,
which then merges all of them to generate aggregate statis-
tics. In our Azure testbed, transferring control events in-
curs microsecond-level latency within the local server and
millisecond-level latency across servers.

Batch control event We developed a control policy that
dynamically adjusts the data batch size to meet a latency
threshold. A large batch amortizes per-event runtime over-
head but incurs additional buffering latency. We investigate
the performance of a data flow using different batch sizes.
We then collect all aggregates and merge them using a map-
reduce parallel execution plan. We run the Yahoo Streaming
Benchmark (Chintapalli et al. 2016) using 16 servers with
4 vCPU and 28 GB RAM that continuously receive events
from the network. With a small batch size (100 events) this
cluster processes 3.2 millions events/s with a processing la-
tency of 232 ms. Increasing the batch size to 5,000 achieves
a throughput of 25.1 millions events/s but at the cost of a
latency of 489 ms.

Topology control policy Flare uses topology control events
not only for expanding or shrinking a single dataflow pro-
cessing stage to cope with variable load, but also for ad-
justing a query plan by inserting or deleting a stage dur-
ing uptime. Unlike existing systems such as Heron, Flink or
Spark Streaming, which require to suspend the system when
reconfiguring the query plan, Flare relies on non-intrusive
topology control events to enforce distributed asynchronous
modification, making negligible impacts towards processing
throughput. Since control events are embedded in the data
stream, it is easy to provide global snapshotting. This en-
ables the system to identify the data events processed by the
old and new topology. This further allows the controller to
correctly handle data dependencies and perform source re-
plays in case of failures.

References
L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea,

D. Merl, J. Metzler, D. Reiss, S. Subramanian, et al. Scuba: div-
ing into data at Facebook. Proceedings of the VLDB Endowment,
6(11):1057–1067, 2013.

M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark
SQL: Relational data processing in Spark. In Proceedings of the
2015 ACM SIGMOD International Conference on Management
of Data, pages 1383–1394. ACM, 2015.

P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri.
Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of
Data, pages 541–556. ACM, 2017.

P. Bernstein, S. Bykov, A. Geller, G. Kliot, and J. Thelin. Orleans:
Distributed virtual actors for programmability and scalability.
Technical report, MSR, March 2014.

P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical
Committee on Data Engineering, 36(4), 2015.

B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher,
J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill: A high-
performance incremental query processor for diverse analytics.
Proceedings of the VLDB Endowment, 8(4):401–412, 2014.

S. Chintapalli, D. Dagit, B. Evans, R. Farivar, T. Graves, M. Holder-
baugh, Z. Liu, K. Nusbaum, K. Patil, B. J. Peng, et al. Bench-
marking streaming computation engines: Storm, flink and spark
streaming. In Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International, pages 1789–1792. IEEE,
2016.

J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. Communications of the ACM, 51(1):107–113,
2008.

A. Goel, B. Chopra, C. Gerea, D. Mátáni, J. Metzler, F. Ul Haq, and
J. Wiener. Fast database restarts at facebook. In Proceedings of
the 2014 ACM SIGMOD international conference on Manage-
ment of data, pages 541–549. ACM, 2014.

A. Jindal, J. Quiané-Ruiz, and S. Madden. INGESTBASE: A
declarative data ingestion system. CoRR, abs/1701.06093, 2017.
URL http://arxiv.org/abs/1701.06093.

S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mit-
tal, J. M. Patel, K. Ramasamy, and S. Taneja. Twitter heron:
Stream processing at scale. In SIGMOD Conference, 2015.

J. Meehan, C. Aslantas, S. B. Zdonik, N. Tatbul, and J. Du. Data
ingestion for the connected world. In CIDR, 2017.

NetFlix. Stream-processing with Mantis, 2016.
https://medium.com/netflix-techblog/

stream-processing-with-mantis-78af913f51a6.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Dis-
cretized streams: Fault-tolerant streaming computation at scale.
In Proceedings of the Twenty-Fourth ACM Symposium on Oper-
ating Systems Principles, pages 423–438. ACM, 2013.

