CoqlOA: A Formalization of 10
Automata in the Coq Proof Assistant

Anish Athalye
MIT CSAIL

Abstract

Implementing distributed systems correctly is difficult. De-
signing correct distributed systems protocols is challenging
because designs must account for concurrent operation and
handle network and machine failures. Implementing these
protocols is challenging as well: it is difficult to avoid sub-
tle bugs in implementations of complex protocols. Formal
verification is a promising approach to ensuring distributed
systems implementations satisfy their specifications, but ver-
ification is challenging and time-consuming. Unfortunately,
current approaches to mechanically verifying distributed
systems in proof assistants using deductive verification do
not allow for compositional reasoning, which could greatly
reduce the effort required to implement verified distributed
systems by enabling reuse of code and proofs.

We present CoqlOA, a framework for reasoning about
distributed systems in a compositional way. CoqIOA builds
on the theory of input/output automata to support specifi-
cation, proof, and composition of systems within the proof
assistant. The framework’s implementation of the theory of
IO automata, including refinement, simulation relations, and
composition, are all machine-checked in the Coq proof assis-
tant. An evaluation of CoqIOA demonstrates that the frame-
work enables compositional reasoning about distributed sys-
tems within the proof assistant.

Introduction

Implementing distributed systems correctly is difficult. De-
signing protocols for distributed systems is challenging be-
cause designs must account for concurrent operation and
handle network and machine failures. Furthermore, because
distributed systems protocols are complicated, it is difficult
to avoid subtle bugs in implementations of these protocols.
Production systems under wide use have had subtle cor-
rectness bugs. For example, testing has revealed correctness
bugs in releases of popular systems such as Cassandra, Con-
sul, ElasticSearch, etcd, Kafka, MongoDB, and others [1].
Unfortunately, tracking down correctness bugs in dis-
tributed systems through testing is time-consuming, and fur-
thermore, it is incomplete. Formal methods provide a much
more rigorous means of building high-assurance systems.

Deductive verification provides a machine-checkable proof
that code satisfies the specification. Theory and tools have
advanced in recent years, and researchers have succeeded in
building provably correct implementations of realistic dis-
tributed systems such as Raft [2]] on top of the Verdi frame-
work [3]] and a replicated state machine and sharded key-
value store using the IronFleet methodology [4].

Problem and goal

Prior work in verifying realistic distributed systems repre-
sents impressive engineering effort. Unfortunately, there is
no straightforward way to combine individual verified sys-
tems into larger services, because prior work is not designed
for compositional reasoning.

We define compositional reasoning as follows. With an
approach to verification that supports compositional reason-
ing, we should be able to take individual verified systems,
compose them together into a larger service, and easily prove
the service correct.

We need compositional reasoning to make verified dis-
tributed systems practical, because compositional reasoning
enables us to structure code and proofs to manage com-
plexity and reduce programming effort. With regular non-
verified distributed systems, programmers separate larger
services into individual systems. For example, programmers
may use a caching system like Memcached together with a
database like MySQL. In a similar manner, we need to be
able to build verified services out of individual verified sys-
tems.

CoqIOA aims to enable building reusable systems that
are independently verifiable in such a way that reasoning
about layering and composition reuses proofs of correctness
of individual components. Analogous to the previous real-
world example, we would want to enable building a verified
caching system and a verified database such that we can ver-
ify the use of the caching system on top of the database and
prove end-to-end correctness. In the general case, we want to
be able to compose components of distributed systems that
have been proven correct and easily provide end-to-end cor-
rectness guarantees for the overall service.

Prior work does not support this kind of compositional
reasoning. The IronFleet methodology [4] of layered re-



finement allows for building individual verified distributed
systems. Verdi [3]] supports a type of vertical composition
through verified system transformers, but Verdi does not
support reasoning about services consisting of multiple ver-
ified systems.

Approach

We base our approach on the theory of input/output au-
tomata [5]], a formal model for reasoning about asynchronous
concurrent systems, to reason about distributed systems.
Systems are specified as automata, and implementations are
shown to refine specifications by proving that the behavior of
the implementation is a subset of the behavior of the spec-
ification. Automata in compositions can be substituted by
others that refine the original automata, so that the resultant
composition refines the original composition; a specifica-
tion can be swapped for its implementation while preserving
correctness. This is what enables compositional reasoning.

We formalize a theory based on IO automata in a proof
assistant to enable machine-checked formal reasoning about
distributed systems in a compositional way. Our formaliza-
tion includes a specification of IO automata, theorems about
simulation relations used to prove refinement, and theorems
about composition.

Implementation

We implement the CoqIOA prototype entirely in the Coq
proof assistant [[6]. Only our definitions of IO automata and
automata refinement, comprising about 100 lines of code,
are trusted. All other components of the framework, about
1000 lines of code, are mechanically verified by Coq’s proof
checker: all theorems about 10 automata, including theo-
rems on simulation relations and composition, are proven
correct in Coq.

We have used the CoqlOA framework to reason about toy
systems implemented using IO automata. The CoqIOA pro-
totype currently has one major limitation: we do not have a
code extraction mechanism to produce executable code from
IO automata descriptions. IO automata are specified in a re-
lational manner, and they can be nondeterministic, and so
they are not inherently executable. We plan to implement
a programmer-assisted translation between IO automata de-
scriptions and executable versions of the automata that prov-
ably refine the originals.

Evaluation

We demonstrate that CoqIOA enables compositional reason-
ing through a case study of a toy key-value store written in
700 lines of Coq code.

In our example, we have a specification of a key-value
store modeled as a single automaton, and we have an imple-
mentation of a client communicating with a key-value server
over channels that reorder messages, which can be seen as a
simplified version of machines communicating over a pro-

Server-Client Cha jent-Server Channel

Reordering Channel

Send Mediator

Send Mediator

Reordering Channel

Figure 1. Client-server key-value store implementation
over reordering channels.

tocol like UDP. The implementation adds send and receive
mediators to the channels to make them effectively imple-
ment reliable channels (see Figure I]).

We prove that the implementation satisfies the specifica-
tion, and we use compositional reasoning to construct the
proof. First, we prove that a mediated reordering channel im-
plements a reliable channel. Next, we prove client communi-
cation to a key-value server correct on top of a specification
of a reliable channel. Finally, given those two proofs, we
use our composition theorems to prove that our system com-
municating over mediated reordering channels implements a
key-value store.

Next, we plan on implementing a more realistic ex-
ample within the CoqlOA framework: for example, the
Memcached-MySQL composition.

Contributions

The main contribution of our work is a methodology for
compositional reasoning about distributed systems in a proof
assistant as well as CoqlOA, an implementation of this
methodology in the Coq proof assistant. Specifically, the
contributions of our work are as follows:

1. We formalize input/output automata in the Coq proof as-
sistant, supporting specification, proof, and composition
within the proof assistant.

2. We provide machine-checked proofs of the theory of 10
automata, including refinement, simulation relations, and
composition.

3. We evaluate the effectiveness of our system in enabling
compositional reasoning through a case study of a toy
system.



References

[1] K. Kingsbury, “Jepsen analyses.” http://Jjepsen.io/
analyses.

[2] D. Woos, J. R. Wilcox, S. Anton, Z. Tatlock, M. D. Ernst, and
T. Anderson, “Planning for change in a formal verification of
the Raft consensus protocol,” in Proceedings of the 5th ACM
SIGPLAN Conference on Certified Programs and Proofs, CPP
2016, (New York, NY, USA), pp. 154-165, ACM, 2016.

[3] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. D. Ernst, and T. Anderson, “Verdi: A framework for imple-
menting and formally verifying distributed systems,” in PLDI
2015: Proceedings of the ACM SIGPLAN 2015 Conference
on Programming Language Design and Implementation, (Port-
land, OR, USA), pp. 357-368, June 2015.

[4] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill, “IronFleet: Proving prac-
tical distributed systems correct,” in Proceedings of the 25th
Symposium on Operating Systems Principles, SOSP *15, (New
York, NY, USA), pp. 1-17, ACM, 2015.

[5] N. A. Lynch and M. R. Tuttle, “An introduction to input/output
automata,” CWI Quarterly, vol. 2, pp. 219-246, 1989.

[6] Coq development team, Coq Reference Manual, Version
8.6. INRIA, Dec. 2016. https://coqg.inria.fr/
distrib/V8.6/refman/|


http://jepsen.io/analyses
http://jepsen.io/analyses
https://coq.inria.fr/distrib/V8.6/refman/
https://coq.inria.fr/distrib/V8.6/refman/

